Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental tools

Nucleation in a cloud chamber is an important experimental tool to understand nucleation processes. Such nucleation by ions can arise in atmospheric physics theoretical analysis has been made [62, 63] and there are interesting differences in the nucleating ability of positive and negative ions [64]. In water vapor, it appears that the full heat of solvation of an ion is approached after only 5-10 water molecules have associated with... [Pg.337]

As the experimental tools for biochemical transformations have become more pow erful and procedures for carrying out these transformations m the laboratory more rou tine the application of biochemical processes to mainstream organic chemical tasks including the production of enantiomerically pure chiral molecules has grown... [Pg.312]

There are a few basic numerical and experimental tools with which you must be familiar. Fundamental measurements in analytical chemistry, such as mass and volume, use base SI units, such as the kilogram (kg) and the liter (L). Other units, such as power, are defined in terms of these base units. When reporting measurements, we must be careful to include only those digits that are significant and to maintain the uncertainty implied by these significant figures when transforming measurements into results. [Pg.33]

The use of state-selective chemistry has been an experimental tool to elucidate the dynamics of chemical reactions, but its appHcation to practical chemical process control to enhance yields of specific products is ia the developmental stage. [Pg.18]

Because high quaHty, low cost, and optimum performance are required for spray equipment, improved analytical and experimental tools are iadispensable for increasing productivity ia many competitive iadustries. In most iastances, it is no longer adequate to characterize a spray solely on the basis of flow rate and spray pattern. Information on droplet size, velocity, volume flux, and number density is often needed and can be determined usiag advanced laser diagnostic techniques. These improvements have benefited a wide spectmm of consumer and specialized iadustrial products. [Pg.327]

As mentioned earlier, the contact-mechanics-based experimental studies of interfacial adhesion primarily include (1) direct measurements of surface and interfacial energies of polymers and self-assembled monolayers (2) quantitative studies on the role of interfacial coupling agents in the adhesion of elastomers (3) adhesion of microparticles on surfaces and (4) adhesion of viscoelastic polymer particles. In these studies, a variety of experimental tools have been employed by different researchers. Each one of these tools offers certain advantages over the others. These experimental studies are reviewed in Section 4. [Pg.80]

Section 4.1 briefly describes some of the commonly employed experimental tools and procedures. Chaudhury et al., Israelachvili et al. and Tirrell et al. employed contact mechanics based approach to estimate surface energies of different self-assembled monolayers and polymers. In these studies, the results of these measurements were compared to the results of contact angle measurements. These measurements are reviewed in Section 4.2. The JKR type measurements are discussed in Section 4.2.1, and the measurements done using the surface forces apparatus (SFA) are reviewed in Section 4.2.2. [Pg.80]

In these studies, a variety of experimental tools have been employed by different researchers. These include the JKR apparatus and the SFA. Each one of these tools offers certain advantages over the others. These experimental tools are briefly described in the following section. [Pg.92]

Given the importance of surface and interfacial energies in determining the interfacial adhesion between materials, and the unreliability of the contact angle methods to predict the surface energetics of solids, it has become necessary to develop a new class of theoretical and experimental tools to measure the surface and interfacial energetics of solids. Thia new class of methods is based on the recent developments in the theories of contact mechanics, particularly the JKR theory. [Pg.99]

In view of this apparent contradictory outcome from the transport and magnetic properties, we were motivated to investigate the dynamics of the charge excitation spectrum by optical methods. In fact, the optical measurement is a powerful contactless experimental tool which should in principle allow to unfold the disagreement between and p(7 since the optical response of a metal... [Pg.90]

This ability to reduce the reaction order by maintaining one or more concentrations constant is a veiy valuable experimental tool, for it often permits the simplification of the reaction kinetics. It may even allow a complicated rate equation to be transformed into a simple rate equation. [Pg.23]

The potentiostat has supplied an experimental tool for the study of anodic protection. The elucidation of passive behaviour made possible by poten-tiostatic anode polarisation curves allowed investigators to determine the conditions necessary for maintaining a metal in a stable passive condition by provision of a suitable environment, addition of cathodic alloying elementsand/or maintenance of the required potential by means of external anodic polarisation - . ... [Pg.1124]

Several agents affect the turnover of F-actin. They are not used therapeutically but serve as experimental tools to study the role of F-actin in cell function. [Pg.416]

The cy tochalasins A, B, C, D, E, and H are found in various species of mould. Mainly cytochalasin B and D are used as experimental tools. Cytochalasin D is 10 times more potent, acting at concentrations between 2 and 35 nM in cell-free systems. Cy tochalasins bind to the barbed end of F-actin and block the addition as well as dissociation of G-actin at that end. At micromolar concentrations, cytochalasin D can bind to G-actin and actin dimers and thus block additional polymerization. When applied to cultured cells, micromolar concentrations of cytochalasins remove stress fibres and other F-actin structures. [Pg.416]

The inhibitors of RNA polymerase, which generates RNA from DNA, inhibit a crucial step in gene expression. Inhibition of the eukaryotic form of RNA polymerase is used in cancer chemotherapy and is also an important experimental tool. For example, actinomy-cin D binds to the guanine residues in DNA and blocks the movement of the eukaryotic RNA polymerase. Specific inhibitors of bacterial RNA polymerase can be used as antibacterial agents. Most of these inhibitors like rifamycin bind to the prokaryotic enzyme. [Pg.1094]

X-Ray diffraction from single crystals is the most direct and powerful experimental tool available to determine molecular structures and intermolecular interactions at atomic resolution. Monochromatic CuKa radiation of wavelength (X) 1.5418 A is commonly used to collect the X-ray intensities diffracted by the electrons in the crystal. The structure amplitudes, whose squares are the intensities of the reflections, coupled with their appropriate phases, are the basic ingredients to locate atomic positions. Because phases cannot be experimentally recorded, the phase problem has to be resolved by one of the well-known techniques the heavy-atom method, the direct method, anomalous dispersion, and isomorphous replacement.1 Once approximate phases of some strong reflections are obtained, the electron-density maps computed by Fourier summation, which requires both amplitudes and phases, lead to a partial solution of the crystal structure. Phases based on this initial structure can be used to include previously omitted reflections so that in a couple of trials, the entire structure is traced at a high resolution. Difference Fourier maps at this stage are helpful to locate ions and solvent molecules. Subsequent refinement of the crystal structure by well-known least-squares methods ensures reliable atomic coordinates and thermal parameters. [Pg.312]

Surface force apparatus has been applied successfully over the past years for measuring normal surface forces as a function of surface gap or film thickness. The results reveal, for example, that the normal forces acting on confined liquid composed of linear-chain molecules exhibit a periodic oscillation between the attractive and repulsive interactions as one surface continuously approaches to another, which is schematically shown in Fig. 19. The period of the oscillation corresponds precisely to the thickness of a molecular chain, and the oscillation amplitude increases exponentially as the film thickness decreases. This oscillatory solvation force originates from the formation of the layering structure in thin liquid films and the change of the ordered structure with the film thickness. The result provides a convincing example that the SFA can be an effective experimental tool to detect fundamental interactions between the surfaces when the gap decreases to nanometre scale. [Pg.17]

There are many nonintrusive experimental tools available that can help scientists to develop a good picture of fluid dynamics and transport in chemical reactors. Laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and sonar Doppler for velocity measurement, planar laser induced fluorescence (PLIF) for mixing studies, and high-speed cameras and tomography are very useful for multiphase studies. These experimental methods combined with computational fluid dynamics (CFDs) provide very good tools to understand what is happening in chemical reactors. [Pg.331]


See other pages where Experimental tools is mentioned: [Pg.2390]    [Pg.2424]    [Pg.11]    [Pg.41]    [Pg.389]    [Pg.356]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.513]    [Pg.79]    [Pg.94]    [Pg.98]    [Pg.1]    [Pg.763]    [Pg.385]    [Pg.66]    [Pg.65]    [Pg.559]    [Pg.689]    [Pg.115]    [Pg.134]   
See also in sourсe #XX -- [ Pg.38 ]

See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Basic Tools in Experimental Design

Experimental Tools and Techniques

Some Classical and Emerging Experimental Tools

Theoretical Basis of the Experimental Tools

© 2024 chempedia.info