Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basic building blocks

A quantum computation takes place according to the laws of quantum physics. One might object that this is trivially true since quantum physics is believed to be a most accurate description of our physical world and thus of our computers as well. However, on a microscopic scale quantum mechanics predictes phenomena that are counterintuitive to our minds that are accustomed to the macroscopic world. We will define a quantum computation as a computation in which these quantum effects are relevant for the outcome of the computation. Such effects are for example quantum interference and entanglement, which will be discussed below. [Pg.182]


The aim of this section is to show how the modulus-phase formulation, which is the keytone of our chapter, leads very directly to the equation of continuity and to the Hamilton-Jacobi equation. These equations have formed the basic building blocks in Bohm s formulation of non-relativistic quantum mechanics [318]. We begin with the nonrelativistic case, for which the simplicity of the derivation has... [Pg.158]

Any one nucleotide, the basic building block of a nucleic acid, is derived from a molecule of phosphoric acid, a molecule of a sugar (either deoxyribose or ribose), and a molecule of one of five nitrogen compounds (bases) cytosine (C), thymine (T), adenine (A), guanine (G), uracil (U). [Pg.421]

Almost all of the OX that is recovered is used to produce phthaUc anhydride. PhthaUc anhydride is a basic building block for plasticizers used in flexible PVC resins, for polyester resins used in glass-reinforced plastics, and for alkyd resins used for surface coatings. OX is also used to manufacture phthalonitrile, which is converted to copper phthalocyanine, a pigment. [Pg.424]

Fig. 5. Device model for an MIS photodiode, the basic building block of the CCD photodetector. The depletion region is generated by the battery... Fig. 5. Device model for an MIS photodiode, the basic building block of the CCD photodetector. The depletion region is generated by the battery...
PMBs are primarily basic building blocks for more complex chemical intermediates. [Pg.503]

A large number of hindered phenoHc antioxidants are based on the Michael addition of 2,6-di-/ f2 -butylphenol and methyl acrylate under basic catalysis to yield the hydrocinnamate which is a basic building block used in the production of octadecyl 3-(3,5-di-/ f2 butyl-4-hydroxyphenyl)propionate, [2082-79-3], tetrakis(methylene-3(3,5-di-/ f2 butyl-4-hydroxylphenyl)propionate)methane [6683-19-8], and many others (63,64). These hindered phenolic antioxidants are the most widely used primary stabilizers in the world and are used in polyolefins, synthetic and natural mbber, styrenics, vinyl polymers, and engineering resins. 2,6-Di-/ f2 -butylphenol is converted to a methylene isocyanate which is trimerized to a triazine derivative... [Pg.69]

Synthetic chemical approaches to the preparation of carbon-14 labeled materials iavolve a number of basic building blocks prepared from barium [ CJ-carbonate (2). These are carbon [ C]-dioxide [ CJ-acetjlene [U— C]-ben2ene, where U = uniformly labeled [1- and 2- C]-sodium acetate, [ C]-methyl iodide, [ C]-methanol, sodium [ C]-cyanide, and [ CJ-urea. Many compHcated radiotracers are synthesized from these materials. Some examples are [l- C]-8,ll,14-eicosatrienoic acid [3435-80-1] inoxn. [ CJ-carbon dioxide, [ting-U— C]-phenyhsothiocyanate [77590-93-3] ftom [ " CJ-acetjlene, [7- " C]-norepinephrine [18155-53-8] from [l- " C]-acetic acid, [4- " C]-cholesterol [1976-77-8] from [ " CJ-methyl iodide, [l- " C]-glucose [4005-41-8] from sodium [ " C]-cyanide, and [2- " C]-uracil [626-07-3] [27017-27-2] from [ " C]-urea. All syntheses of the basic radioactive building blocks have been described (4). [Pg.438]

Tlie microscopic and macroscopic properties of asbestos fibers stem from their intrinsic, and sometimes unique, crystalline features. As with all siUcate minerals, the basic building blocks of asbestos fibers are the siUcate tetraliedra wliicli may occur as double chains, as in the ampliiboles, or in... [Pg.347]

Hydrogen cyanide (prussic acid) is a liquid with a boiling point of 26°C. Its vapour is flammable and extremely toxic. The effects of acute exposure are given in Table 5.34. This material is a basic building block for the manufacture of a range of chemical products such as sodium, iron or potassium cyanide, methyl methacrylate, adiponitrile, triazines, chelates. [Pg.126]

Olefins are the basic building blocks for many chemical syntheses. These unsaturated materials enter into polymers, rubbers, and plastics, and react to form a wide variety of chemical compounds such as alcohols, amines, chlorides and oxides. [Pg.103]

Classical lamination theory consists of a coiiection of mechanics-of-materials type of stress and deformation hypotheses that are described in this section. By use of this theory, we can consistentiy proceed directiy from the basic building block, the lamina, to the end result, a structural laminate. The whole process is one of finding effective and reasonably accurate simplifying assumptions that enable us to reduce our attention from a complicated three-dimensional elasticity problem to a SQlvable two-dimensinnal merbanics of deformable bodies problem. [Pg.190]

A collection of the basic building block, a lamina, was bonded together to form a laminate in Chapter 4. The behavior restrictions were covered in the section on classical lamination theory. Special cases of laminates were discussed to learn about laminate characteristics and behavior. Predicted and measured laminate stiffnesses were favorably compared to give credence to classical lamination theory. Then, the strength of laminates was discussed and found to be reasonably predictable. Finally, interlaminar stresses were analyzed because of their apparent strong influence on laminate strength (and life). [Pg.332]

One of the key elements in laminated composite structures design is the ability to tailor a laminate to suit the job at hand. Tailoring consists of the following steps. We want to design the constituents of the laminate, and those constituents include the basic building blocks of the individual laminae and as well how they are oriented within the laminate. We design those constituents to just barely meet (with an appropriate factor of safety) the specific requirements for, say, strength and stiffness. [Pg.378]

Zeolite is sometimes called molecular sieve. It has a well defined lattice structure. Its basic building blocks are silica and alumina tetrahedra (pyramids). Each tetrahedron (Figure 3-1) consists of a silicon or aluminum atom at the center of the tetrahedron, with oxygen atoms at the four comers. [Pg.85]

Elements as well as compounds can exist as discrete molecules. In hydrogen gas, the basic building block is a molecule consisting of two hydrogen atoms joined by a covalent bond ... [Pg.35]

The basic building block of carbon is a planar sheet of carbon atoms arranged in a honeycomb structure (called graphene or basal plane). These carbon sheets are stacked in an ordered or disordered manner to form crystallites. Each crystallite has two different edge sites (Fig. 2) the armchair and zig-zag sites. In graphite and other ordered carbons, these edge sites are actually the crystallite planes, while in disordered soft and hard carbons these sites, as a result of turbostratic disorder, may not... [Pg.430]

The nucleosome represents the first level of DNA condensation and is the basic building block of all chromatin structures. It was discovered in 1973 and consists of a central histone octamer with about 150 base pairs of DNA wrapped around. [Pg.899]

Hairspray is formulated to hold hair in place and keep it shiny, without flaking off, without failing, even in humid conditions. Yet it must retain the ability to be washed out of the hair easily for at least forty-eight hours, and it must not clog the spray can s nozzle. Complex polymers are needed to perform all of these tasks well. The basic building blocks of these polymers are the same ones found in acrylic paints and white glue. But they are put together in a different way. [Pg.234]

The small molecules used as the basic building blocks for these large molecules are known as monomers. For example the commercially important material poly(vinyl chloride) is made from the monomer vinyl chloride. The repeat unit in the polymer usually corresponds to the monomer from which the polymer was made. There are exceptions to this, though. Poly(vinyl alcohol) is formally considered to be made up of vinyl alcohol (CH2CHOH) repeat units but there is, in fact, no such monomer as vinyl alcohol. The appropriate molecular unit exists in the alternative tautomeric form, ethanal CH3CHO. To make this polymer, it is necessary first to prepare poly(vinyl ethanoate) from the monomer vinyl ethanoate, and then to hydrolyse the product to yield the polymeric alcohol. [Pg.1]

Fig. 1. Iron-sulfur clusters basic building blocks. In most cases the iron is tetrahe-drally coordinated by sulfur from cysteinyl residues (and labile sulfur). Variability on coordination is allowed (see text). A, Rubredoxin type FeS4 (simplest cluster, no labile sulfur) B, plant-type ferredoxin [2Fe-2S] C, bacterial ferredoxin [3Fe-4S] D, bacterial ferredoxin and HiPIP [4Fe-4S] E, novel cluster [4Fe-2S, 20] ( hybrid cluster ). Fig. 1. Iron-sulfur clusters basic building blocks. In most cases the iron is tetrahe-drally coordinated by sulfur from cysteinyl residues (and labile sulfur). Variability on coordination is allowed (see text). A, Rubredoxin type FeS4 (simplest cluster, no labile sulfur) B, plant-type ferredoxin [2Fe-2S] C, bacterial ferredoxin [3Fe-4S] D, bacterial ferredoxin and HiPIP [4Fe-4S] E, novel cluster [4Fe-2S, 20] ( hybrid cluster ).
The basic building block for the protected expanded [n]pericyclinones 89 [391 was obtained by simple acetalization of l,5-bis(trimethylsilyl)penta-l,4-diyne-... [Pg.19]

In this chapter we describe the basic principles involved in the controlled production and modification of two-dimensional protein crystals. These are synthesized in nature as the outermost cell surface layer (S-layer) of prokaryotic organisms and have been successfully applied as basic building blocks in a biomolecular construction kit. Most importantly, the constituent subunits of the S-layer lattices have the capability to recrystallize into iso-porous closed monolayers in suspension, at liquid-surface interfaces, on lipid films, on liposomes, and on solid supports (e.g., silicon wafers, metals, and polymers). The self-assembled monomolecular lattices have been utilized for the immobilization of functional biomolecules in an ordered fashion and for their controlled confinement in defined areas of nanometer dimension. Thus, S-layers fulfill key requirements for the development of new supramolecular materials and enable the design of a broad spectrum of nanoscale devices, as required in molecular nanotechnology, nanobiotechnology, and biomimetics [1-3]. [Pg.333]

The amino acids, basic building blocks of proteins, all share this dual acid-base character. See Chapter 13 for a description of the amino acids and their biological chemistry. Organic bases also have a long and varied history as painkillers and narcotics, as our Chemishy and Life Box on the next page describes. [Pg.1235]


See other pages where Basic building blocks is mentioned: [Pg.570]    [Pg.163]    [Pg.377]    [Pg.312]    [Pg.54]    [Pg.264]    [Pg.344]    [Pg.353]    [Pg.360]    [Pg.126]    [Pg.68]    [Pg.2]    [Pg.15]    [Pg.55]    [Pg.238]    [Pg.748]    [Pg.897]    [Pg.808]    [Pg.722]    [Pg.1137]    [Pg.161]    [Pg.590]    [Pg.648]    [Pg.222]    [Pg.71]    [Pg.921]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Basic Block

Basic Building Blocks to Downstream Products by Homogeneous Catalysis

Basic Surfactant Building Blocks

Building basic

Carbon basic building block

Crude Oil to Gasoline and Basic Building Blocks by Heterogeneous Catalysts

Micro basic building block

Monomers - the basic building blocks

Silicates - The Basic Building Blocks of Rocks

Synthesis of Basic Urethane Building Blocks

© 2024 chempedia.info