Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface metallized electrode

In addition, the LTCC surface metallized electrode layer is frequently required to connect the active and passive components electrically and mechanically. Soldered joints and wire bonding are the representative connection methods, and it is necessary to select conductive materials suited to either method. [Pg.60]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]

Photoelectrochemistry may be used as an in situ teclmique for the characterization of surface films fonned on metal electrodes during corrosion. Analysis of the spectra allows the identification of semiconductor surface phases and the characterization of their thickness and electronic properties. [Pg.1947]

Application of an electric field between two metal electrodes causes a few ions and electrons to be desorbed and is surface or thermal emission (see Chapter 7 for more information on thermal ionization). Unless the electrodes are heated strongly, the number of electrons emitted is very small, but, even at normal temperatures, this emission does add to the small number of electrons caused by cosmic radiation and is continuous. [Pg.40]

Electrode Walls. Development of durable electrode wads, one of the most critical issues for MHD generators, has proceeded in two basic directions ceramic electrodes operating at very high surface temperatures (>2000 K) for use in channels operating with clean fuels such as natural gas, and cooled metal electrodes with surface temperatures in the range 500—800 K for channels operating with slag or ash-laden flows. [Pg.429]

Participation in the electrode reactions The electrode reactions of corrosion involve the formation of adsorbed intermediate species with surface metal atoms, e.g. adsorbed hydrogen atoms in the hydrogen evolution reaction adsorbed (FeOH) in the anodic dissolution of iron . The presence of adsorbed inhibitors will interfere with the formation of these adsorbed intermediates, but the electrode processes may then proceed by alternative paths through intermediates containing the inhibitor. In these processes the inhibitor species act in a catalytic manner and remain unchanged. Such participation by the inhibitor is generally characterised by a change in the Tafel slope observed for the process. Studies of the anodic dissolution of iron in the presence of some inhibitors, e.g. halide ions , aniline and its derivatives , the benzoate ion and the furoate ion , have indicated that the adsorbed inhibitor I participates in the reaction, probably in the form of a complex of the type (Fe-/), or (Fe-OH-/), . The dissolution reaction proceeds less readily via the adsorbed inhibitor complexes than via (Fe-OH),js, and so anodic dissolution is inhibited and an increase in Tafel slope is observed for the reaction. [Pg.811]

The metal electrode to be studied must be carefully prepared, attached to an electrical lead and mounted so that a known surface area of one face is presented to the solution. Several procedures are used such as mounting in a cold setting resin (Araldite) or inserting into a close-fitting holder of p.t.f.e. In the case of metal-solution systems that have a propensity for pitting care must be taken to avoid a crevice at the interface between metal specimen and the mounting material, and this can be achieved effectively by mounting the... [Pg.1008]

Fig. 20.11 Two types of arrangement of ions at a metal/solution interface, (a) Arrangement O solvated ions in the O.H.P. and surface of electrode covered with water dipoles, (b) Arrangement I desolvated ions in the I.H.P. (after Bockris and Reddy )... Fig. 20.11 Two types of arrangement of ions at a metal/solution interface, (a) Arrangement O solvated ions in the O.H.P. and surface of electrode covered with water dipoles, (b) Arrangement I desolvated ions in the I.H.P. (after Bockris and Reddy )...
S.2.2 Carbon Electrodes Solid electrodes based on carbon are currently in widespread use in electroanalysis, primarily because of their broad potential window, low background current, rich surface chemistry, low cost, chemical inertness, and suitability for various sensing and detection applications. In contrast, electron-transfer rates observed at carbon surfaces are often slower than those observed at metal electrodes. The electron-transfer reactivity is strongly affected by the origin... [Pg.113]

Passivation of a metal electrode takes place when active metal dissolution competes with the formation of a surface oxide film. The adsorbed-... [Pg.227]

Figure 17. Energy for the nucleation of a surface film on metal electrode. M, metal OX, oxide film EL, electrolyte solution. Aj is the activation barrier for the formation of an oxide-film nucleus and rj is its critical radius. 7 a is the interfacial tension of the metal-electrolyte interface, a is the interfacial tension of the film-electrolyte interface. (From N. Sato, J. Electro-chem. Soc. 129, 255, 1982, Fig. 5. Reproduced by permission of The Electrochemical Society, Inc.)... Figure 17. Energy for the nucleation of a surface film on metal electrode. M, metal OX, oxide film EL, electrolyte solution. Aj is the activation barrier for the formation of an oxide-film nucleus and rj is its critical radius. 7 a is the interfacial tension of the metal-electrolyte interface, a is the interfacial tension of the film-electrolyte interface. (From N. Sato, J. Electro-chem. Soc. 129, 255, 1982, Fig. 5. Reproduced by permission of The Electrochemical Society, Inc.)...
Inside a pit in electrolytic solution, anodic dissolution (the critical dissolution current density, and diffusion of dissolved metal hydrates to the bulk solution outside the pit take place simultaneously, so that the mass transfer is kept in a steady state. According to the theory of mass transport at an electrode surface for anodic dissolution of a metal electrode,32 the total increase of the hydrates inside a pit, AC(0) = AZC,<0),is given by the following equation33,34 ... [Pg.246]

At the potential beyond the critical pitting potential, the passive metal electrode system turns unstable. As mentioned before, the asymmetrical fluctuations arise from the electrostatic interaction between the electrode surface and solution particles in the double layer, so that the pitting current develops rapidly, and pits grow simultaneously. [Pg.266]

Thus, as will be shown in this book, the effect of electrochemical promotion (EP), or NEMCA, or in situ controlled promotion (ICP), is due to an electrochemically induced and controlled migration (backspillover) of ions from the solid electrolyte onto the gas-exposed, that is, catalytically active, surface of metal electrodes. It is these ions which, accompanied by their compensating (screening) charge in the metal, form an effective electrochemical double layer on the gas-exposed catalyst surface (Fig. 1.5), change its work function and affect the catalytic phenomena taking place there in a very pronounced, reversible, and controlled manner. [Pg.6]

Figure 3.6. Spatial variation of the electrochemical potential, jl02-, of O2 in YSZ and on a metal electrode surface under conditions of spillover (broken lines A and B) and when equilibrium has been established. In case (A) surface diffusion on the metal surface is rate limiting while in case (B) the backspillover process is controlled by the rate, I/nF, of generation of the backspillover species at the three-phase-boundaries. This is the case most frequently encountered in electrochemical promotion (NEMCA) experiments as shown in Chapter 4. Figure 3.6. Spatial variation of the electrochemical potential, jl02-, of O2 in YSZ and on a metal electrode surface under conditions of spillover (broken lines A and B) and when equilibrium has been established. In case (A) surface diffusion on the metal surface is rate limiting while in case (B) the backspillover process is controlled by the rate, I/nF, of generation of the backspillover species at the three-phase-boundaries. This is the case most frequently encountered in electrochemical promotion (NEMCA) experiments as shown in Chapter 4.
It is worth emphasizing that Eq. (5.22) is valid under both open-circuit and closed-circuit conditions and that it holds for any part of the surfaces of the catalyst and the reference electrodes. Thus, referring to the metal electrode surfaces in contact with the electrolyte (region E) it is ... [Pg.214]

Several approaches have been proposed to measure the three phase boundary (tpb) length, Ntpb in solid state electrochemistry. The parameter Ntpb expresses the mol of metal electrode in contact both with the solid electrolyte and with the gas phase. More commonly one is interested in the tpb length normalized with respect to the surface area, A, of the electrolyte. This normalized tpb length, denoted by Ntpb,n equals Ntpt/A. [Pg.243]


See other pages where Surface metallized electrode is mentioned: [Pg.480]    [Pg.480]    [Pg.150]    [Pg.600]    [Pg.604]    [Pg.1949]    [Pg.429]    [Pg.333]    [Pg.44]    [Pg.63]    [Pg.304]    [Pg.27]    [Pg.284]    [Pg.348]    [Pg.280]    [Pg.219]    [Pg.239]    [Pg.144]    [Pg.197]    [Pg.599]    [Pg.440]    [Pg.110]    [Pg.117]    [Pg.135]    [Pg.138]    [Pg.279]    [Pg.457]    [Pg.10]    [Pg.106]    [Pg.198]    [Pg.249]    [Pg.254]    [Pg.271]    [Pg.335]    [Pg.338]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Electrode surface

Metallic electrodes

© 2024 chempedia.info