Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption nonspecific

The performance of several Sephacryl gel combinations is illustrated by results achieved for glucans from different types of starch granules. The applied Sephacryl gels of Pharmacia Biotech (15) are cross-linked copolymers of allyl dextran and N,N -methylene bisacrylamide. The hydrophilic matrix minimizes nonspecific adsorption and thus guarantees maximum recovery. Depending on the pore size of the beads, ranging between 25 and 75 im in diameter, aqueous dissolved biopolymers up to particle diameters of 400 nm can be handled. [Pg.465]

The consideration made above allows us to predict good chromatographic properties of the bonded phases composed of the adsorbed macromolecules. On the one hand, steric repulsion of the macromolecular solute by the loops and tails of the modifying polymer ensures the suppressed nonspecific adsorptivity of a carrier. On the other hand, the extended structure of the bonded phase may improve the adaptivity of the grafted functions and facilitate thereby the complex formation between the adsorbent and solute. The examples listed below illustrate the applicability of the composite sorbents to the different modes of liquid chromatography of biopolymers. [Pg.142]

Generally, for specific and nonspecific adsorption, the following equation is derived. [Pg.257]

In a poor solvent (cyclohexane at 5°C), a polymer chain takes on a condensed globular state because constituent molecules are repulsed by the solvent molecules. Nanofishing of this chain revealed a perfectly different force-extension curve, as shown in Figure 21.5. It was observed that constant force continued from about 30 to 130 nm after nonspecific adsorption between a... [Pg.585]

The sole purpose of the filter support and any applied extracellular matrix is simply to provide a surface for cell attachment and thus to provide mechanical support to the monolayer. However, the filter and matrix also can act as serial barriers to solute movement after diffusion through the cell monolayer. The important variables are the chemical composition of the filter, porosity, pore size, and overall thickness. In some cases, pore tortuosity also can be important. It is desired that the filter, with or without an added matrix, provide a favorable surface to which the cells can attach. However, in some cases these properties can also result in an attractive surface for nonspecific adsorption of the transported solute. In these instances, the appearance of the solute in the receiver compartment of the diffusion cell will not be a true reflection of its movement across the mono-layer. Such problems must be examined on a case-by-case basis. [Pg.245]

Several examples have already been pointed out in which the properties of the solute itself can impact on the results obtained from a transport experiment. Metabolic instability and propensity for nonspecific adsorption are problems which can frequently be encountered and must be considered any time a new solute is to be studied. In addition to these problems, there are several other solute-related factors which must be considered in the design and interpretation of transport studies. [Pg.247]

A major disadvantage is that the direct sensor detection cannot distinguish between the sensor response to the specific analyte binding from the response to a possible nonspecific adsorption of other compounds. The nonspecific fouling from blood or blood serum seems to be one of the main barriers for practical application of immunosensors in medical diagnostics. [Pg.392]

The multilayer immobilization does not require any activation of the supporting surface. Thus, it can be performed in the same way on any transducer. Crosslinked multilayers are stable for long time in biological media and prevent significantly the nonspecific adsorption from blood plasma9. [Pg.398]

Uchida K, Otsuka H, Kaneko M, Kataoka K, Nagasaki Y (2005) A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio the substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal Chem 77 1075-1080... [Pg.138]

Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17 2841-50... [Pg.197]

In equation (34), n is the number of cells and Na is Avogadro s number, and Rt is the total carrier concentration (including both bound and free carriers). Solute depletion can be especially important in laboratory experiments, since large numbers of cells are generally employed at low solute concentrations that are typical of trace elements in natural waters. On the other hand, at high solute concentrations corresponding with carrier saturation, nonspecific adsorption to membrane components other than the carriers becomes important, and thus interpretation is much more difficult. [Pg.475]

The above procedures imply that (1) there is only a single type of site (2) binding occurs only to the transporter site (usually not the case for trace metals), and (3) the internalisation flux is negligible for the equilibration times that are employed [197,198], These conditions are rarely fulfilled for metal transporters. The interpretation of Scatchard plots is especially ambiguous in the presence of several independent sites. On the other hand, in the biomedical literature, where nonspecific adsorption is generally not a problem, values of 104 to 106 carriers per cell (ca. 10-13 to 10 11 carriers cm-2 of cell surface area), with even lower numbers determined for some receptors (e.g. haematopoetic growth factor [199]), are typically reported. [Pg.477]


See other pages where Adsorption nonspecific is mentioned: [Pg.12]    [Pg.28]    [Pg.43]    [Pg.480]    [Pg.156]    [Pg.256]    [Pg.354]    [Pg.422]    [Pg.537]    [Pg.137]    [Pg.137]    [Pg.733]    [Pg.266]    [Pg.249]    [Pg.389]    [Pg.389]    [Pg.390]    [Pg.391]    [Pg.393]    [Pg.395]    [Pg.396]    [Pg.397]    [Pg.399]    [Pg.176]    [Pg.180]    [Pg.274]    [Pg.477]    [Pg.95]    [Pg.29]    [Pg.465]    [Pg.466]    [Pg.107]    [Pg.54]    [Pg.478]    [Pg.511]   
See also in sourсe #XX -- [ Pg.389 ]

See also in sourсe #XX -- [ Pg.289 ]

See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Adsorption specific nonspecific

Immunosensors nonspecific adsorption

Nonspecific surface adsorption

Nonspecificity

© 2024 chempedia.info