Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants from fatty alcohols

For a further separation of the sulfonated surfactants the latter are heated for 4 h with 2 N HC1. The methyl ester sulfonates are split into methanol and a-sulfo fatty acids, which form disodium salts after neutralization with NaOH. The product mixture from acid hydrolysis can be separated by extraction with petroleum ether. For example, the fatty alcohols formed from fatty alcohol sulfo-... [Pg.491]

As mentioned above, neither of the reaction steps in the production of monoesters is particularly high in yield. The finished product therefore contains unreacted raw materials and/or intermediate products. The organic raw materials in themselves are mixtures of many substances. No natural raw material is homogeneous and any naturally based surfactant will be a blend. Fatty alcohol made from coconut oil, for example, is a product containing fatty alcohols from Cj0-Cj8 in varying amounts. Lauryl alcohol obtained from this raw material in its industrial form is a fatty alcohol mainly containing C12 fatty alcohol with, however, significant amounts of C10 and C14 fatty alcohols. [Pg.513]

From the steepest slope of the surface tension versus concentration isotherm (which generally occurs just before the critical micelle concentration—refer to Sec. I.C), one can easily calculate the area occupied by a surfactant molecule at the surface. Practically, for experiments carried out at 25 C, the area is given by dividing 943.5 by the drop of surface tension (in mN/m) per decade of concentration. The result is in square angstroms. Figure 3 shows, as an example, the surface tension-concentration isotherm of Dobanol 91-5 (C9—C11) fatty alcohol ethoxylated from Shell, with an average of five molecules of eth-... [Pg.51]

The adsorbed layer at G—L or S—L surfaces ia practical surfactant systems may have a complex composition. The adsorbed molecules or ions may be close-packed forming almost a condensed film with solvent molecules virtually excluded from the surface, or widely spaced and behave somewhat like a two-dimensional gas. The adsorbed film may be multilayer rather than monolayer. Counterions are sometimes present with the surfactant ia the adsorbed layer. Mixed moaolayers are known that iavolve molecular complexes, eg, oae-to-oae complexes of fatty alcohol sulfates with fatty alcohols (10), as well as complexes betweea fatty acids and fatty acid soaps (11). Competitive or preferential adsorption between multiple solutes at G—L and L—L iaterfaces is an important effect ia foaming, foam stabiLizatioa, and defoaming (see Defoamers). [Pg.236]

Higher molecular primary unbranched or low-branched alcohols are used not only for the synthesis of nonionic but also of anionic surfactants, like fatty alcohol sulfates or ether sulfates. These alcohols are produced by catalytic high-pressure hydrogenation of the methyl esters of fatty acids, obtained by a transesterification reaction of fats or fatty oils with methanol or by different procedures, like hydroformylation or the Alfol process, starting from petroleum chemical raw materials. [Pg.20]

In 1932 the first household detergent based on synthetic surfactants was brought into the market under the name FEWA (Feinwaschmittel). The product was produced from fatty alcohol sulfate by Bohme Fettchemie in Chemnitz. The shortage of the necessary natural raw materials caused by World War II led to the development of products based on more readily available raw materials [2],... [Pg.41]

The amount of residual sulfonate ester remaining after hydrolysis can be determined by a procedure proposed by Martinsson and Nilsson [129], similar to that used to determine total residual saponifiables in neutral oils. Neutrals, including alkanes, alkenes, secondary alcohols, and sultones, as well as the sulfonate esters in the AOS, are isolated by extraction from an aqueous alcoholic solution with petroleum ether. The sulfonate esters are separated from the sultones by chromatography on a silica gel column. Each eluent fraction is subjected to saponification and measured as active matter by MBAS determination measuring the extinction of the trichloromethane solution at 642 nra. (a) Sultones. Connor et al. [130] first reported, in 1975, a very small amount of skin sensitizer, l-unsaturated-l,3-sultone, and 2-chloroalkane-l,3-sultone in the anionic surfactant produced by the sulfation of ethoxylated fatty alcohol. These compounds can also be found in some AOS products consequently, methods of detection are essential. [Pg.444]

Compared with the fatty alcohol sulfates, which are also oleochemically produced anionic surfactants, the ester sulfonates have the advantage that their raw materials are on a low and therefore cost-effective level of fat refinement. The ester sulfonates are produced directly from the fatty acid esters by sulfona-tion, whereas the fatty alcohols, which are the source materials of the fatty alcohol sulfates, have to be formed by the catalytic high-pressure hydrogenation of fatty acids esters [9]. The fatty acid esters are obtained directly from the fats and oils by transesterification of the triglycerides with alcohols [10]. [Pg.463]

More recent publications on sulfosuccinates have confirmed the minimal or close to zero skin and eye irritation caused by these products. In a general screening of product safety evaluation methods the authors [16] rejected the sulfosuccinate from further consideration in the statistical analysis of experimental data (variance analysis) because the product had not shown any irritation in the Duhring-Chamber test. The sulfosuccinate (based on fatty alcohol ethoxy late) was tested in a screening with 14 other surfactants, namely, alkyl sulfates, sulfonates, ether sulfates, and a protein fatty acid condensation product. [Pg.505]

In the simplest case a surfactant is composed of an organic hydrophobic part and a hydrophilic part (Fig. 3). In an alkyl sulfate the hydrophobic part is derived from a fatty alcohol and the sodium sulfate moiety as the hydrophilic counterpart. (Only small variations concerning the fatty chain are possible in this special kind of structure.)... [Pg.505]

Monoester salts of phosphoric acid derived from fatty alcohol ethylene oxide adduct or alkylphenol ethylene oxide adduct useful as surfactants are prepared by addition of R(OCH2CH2) OH, alkali fluoride and (C12P0)20 in a molar ratio of 0.9-1.5 0.05-1 1.0 at -50 to + 10°C and hydrolysis of the Cl-containing intermediates with a base. The monoester phosphates showed comparable or better washing and foaming efficiency than commercial products [12]. [Pg.562]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

A mixture of monolauryl phosphate sodium salt and triethylamine in H20 was treated with glycidol at 80°C for 8 h to give 98% lauryl 2,3-dihydro-xypropyl phosphate sodium salt [304]. Dyeing aids for polyester fibers exist of triethanolamine salts of ethoxylated phenol-styrene adduct phosphate esters [294], Fatty ethanolamide phosphate surfactant are obtained from the reaction of fatty alcohols and fatty ethanolamides with phosphorus pentoxide and neutralization of the product [295]. A double bond in the alkyl group of phosphoric acid esters alter the properties of the molecule. Diethylethanolamine salt of oleyl phosphate is effectively used as a dispersant for antimony oxide in a mixture of xylene-type solvent and water. The composition is useful as an additive for preventing functional deterioration of fluid catalytic cracking catalysts for heavy petroleum fractions. When it was allowed to stand at room temperature for 1 month it shows almost no precipitation [241]. [Pg.615]

Aid in the uniform dispersion of additives. Make powdered solids (e.g. particulate fillers with high energy and hydrophilic surface) more compatible with polymers by coating their surfaces with an adsorbed layer of surfactant in the form of a dispersant. Surface coating reduces the surface energy of fillers, reduces polymer/filler interaction and assists dispersion. Filler coatings increase compound cost. Fatty acids, metal soaps, waxes and fatty alcohols are used as dispersants commonly in concentrations from 2 to 5 wt %. [Pg.778]

Nowadays these compounds are usually blended with other surfactants, including nonionic types (section 9.6). In 1990 a typical low- or non-phosphate domestic detergent contained 7% linear alkylbenzenesulphonate and 6% nonionic fatty alcohol ethoxylate [16]. There is increasing use of the long-chain fatty alcohol poly(oxyethylene) sulphates previously described (e.g. 9.12) as a partial or complete replacement for linear alkylbenzenesulphonates [15] since they are made from renewable feedstocks such as tallow and palm oil [16]. [Pg.20]

It has been claimed that complexes of P-cyclodextrin with anionic surfactants, notably higher fatty alcohol ethoxylates, improve scouring efficiency on cotton and wool in laboratory-scale processing [34]. Residual surfactants carried over from preparation can have undesirable effects in subsequent processing. When cyclodextrins complex with surfactants, their surface activity is reduced. Hence cyclodextrins are potentially useful for the removal of residual amounts of surfactants from substrates [35]. The use of a- and P-cyclodextrins has been studied in this context with one cationic, one anionic and four... [Pg.60]

The most representative non-ionic surfactants are the alkyl (alcohol) ethoxylates. These are adducts of a long-chain alcohol (12—18) with a variable number of EO units (3-11). Other non-ionic surfactants are derived from carbohydrates (glucoside and glucamide derivatives), organosilicones, fatty alcohols, and amides. Products in this category are as follows (compare also Table 1.2) ... [Pg.35]

Alkyl polyglucosides (APG) and alkyl glucamides (AG) are non-ionic surfactants produced on the basis of renewable feedstocks such as glucose and fatty alcohols, which are derived from starch and palm oil, respectively. [Pg.220]

Surfactants and Emulsifiers Derived from Vegetable Oil Based Fatty Alcohols and Fatty Acids... [Pg.86]

Alkyl polyglycosides have long been known but only now, following several years research, has it been possible to develop reaction conditions that allow manufacture on a commercial scale. The structure on which these compounds are based corresponds exactly to the surfactant model described above. The hydro-phobic (or lipophilic) hydrocarbon chain is formed by a fatty alcohol (dodecanol/ tetradecanol) obtained from palm kernel oil or coconut oil. The hydrophilic part of the molecule is based on glucose (dextrose) obtained from starch (Fig. 4.14). [Pg.90]

Nonionic surfactants contain (Fig. 23) no ionic functionalities, as their name implies, and include ethylene oxide adducts (EOA) of alkylphenols and fatty alcohols. Production of detergent chain-length fatty alcohols from both natural and petrochemical precursors has now increased with the usage of alkylphenol ethoxylates (APEO) for some applications. This is environmentally less acceptable because of the slower rate of biodegradation and concern regarding the toxicity of phenolic residues [342]. [Pg.51]

Alkyl ether sulfates with chain lengths ranging from to Cw are quantitatively the most important products currently based on fatty alcohols. It is estimated, that about 20 % of all surfactant alcohols -about 40 % of all fatty alcohols in the coconut range (C,2 Ci,) - are used in the form of alkyl ether suirateg ( ). Alkyl ether sulfates are the most important group of anionic surfactants after linear alkyl-benzenesulfonate (LAS) (2). [Pg.3]

Hilarides and others (1994) investigated the destruction of TCDD on artificially contaminated soils using °Co y radiation. It appeared that TCDD underwent stepwise reduction dechlorination from tetra- to tri-, then di- to chlorodioxin, and then to presumably nonchlorinated dioxins and phenols. The investigators discovered that the greatest amount of TCDD destruction (92%) occurred when soils were amended with 25% water and 2% nonionic surfactant [alkoxylated fatty alcohol (Plurafac RA-40)]. Replicate experiments conducted without the surfactant lowered the rate of TCDD destruction. [Pg.1016]


See other pages where Surfactants from fatty alcohols is mentioned: [Pg.75]    [Pg.91]    [Pg.699]    [Pg.75]    [Pg.152]    [Pg.2828]    [Pg.4001]    [Pg.342]    [Pg.440]    [Pg.440]    [Pg.8]    [Pg.299]    [Pg.289]    [Pg.192]    [Pg.193]    [Pg.193]    [Pg.25]    [Pg.199]    [Pg.49]    [Pg.79]    [Pg.88]    [Pg.138]    [Pg.198]    [Pg.297]    [Pg.8]   
See also in sourсe #XX -- [ Pg.1729 ]




SEARCH



Alcohols fatty alcohol

Fatty alcohols

Fatty surfactant

Surfactant fatty alcohols

Surfactant-alcohol

© 2024 chempedia.info