Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide importance

Kanakidou, M. Crutzen, P.J., 1999 The Photochemical Source of Carbon Monoxide Importance, Uncertainties and Feedbacks , in Chemosphere, 1 91-109. [Pg.80]

CO. Alkynes will react with carbon monoxide in the presence of a metal carbonyl (e.g. Ni(CO)4) and water to give prop>enoic acids (R-CH = CH-C02H), with alcohols (R OH) to give propenoic esters, RCH CHC02R and with amines (R NH2) to give propenoic amides RCHrCHCONHR. Using alternative catalysts, e.g. Fe(CO)5, alkynes and carbon monoxide will produce cyclopentadienones or hydroquinols. A commercially important variation of this reaction is hydroformyiation (the 0x0 reaction ). [Pg.82]

Cobalt has an odd number of electrons, and does not form a simple carbonyl in oxidation state 0. However, carbonyls of formulae Co2(CO)g, Co4(CO)i2 and CoJCO),6 are known reduction of these by an alkali metal dissolved in liquid ammonia (p. 126) gives the ion [Co(CO)4] ". Both Co2(CO)g and [Co(CO)4]" are important as catalysts for organic syntheses. In the so-called oxo reaction, where an alkene reacts with carbon monoxide and hydrogen, under pressure, to give an aldehyde, dicobalt octacarbonyl is used as catalyst ... [Pg.405]

Without carbon, the basis for life would be impossible. While it has been thought that silicon might take the place of carbon in forming a host of similar compounds, it is now not possible to form stable compounds with very long chains of silicon atoms. The atmosphere of Mars contains 96.2% CO2. Some of the most important compounds of carbon are carbon dioxide (CO2), carbon monoxide (CO), carbon disulfide (CS2), chloroform (CHCb), carbon tetrachloride (CCk), methane (CHr), ethylene (C2H4), acetylene (C2H2), benzene (CeHe), acetic acid (CHsCOOH), and their derivatives. [Pg.16]

Oxo Synthesis. Ad of the synthesis gas reactions discussed to this point are heterogeneous catalytic reactions. The oxo process (qv) is an example of an industriady important class of reactions cataly2ed by homogeneous metal complexes. In the oxo reaction, carbon monoxide and hydrogen add to an olefin to produce an aldehyde with one more carbon atom than the original olefin, eg, for propjiene ... [Pg.166]

Even though form amide was synthesized as early as 1863 by W. A. Hoffmann from ethyl formate [109-94-4] and ammonia, it only became accessible on a large scale, and thus iadustrially important, after development of high pressure production technology. In the 1990s, form amide is mainly manufactured either by direct synthesis from carbon monoxide and ammonia, or more importandy ia a two-stage process by reaction of methyl formate (from carbon monoxide and methanol) with ammonia. [Pg.507]

Reaction 21 is the decarbonylation of the intermediate acyl radical and is especially important at higher temperatures it is the source of much of the carbon monoxide produced in hydrocarbon oxidations. Reaction 22 is a bimolecular radical reaction analogous to reaction 13. In this case, acyloxy radicals are generated they are unstable and decarboxylate readily, providing much of the carbon dioxide produced in hydrocarbon oxidations. An in-depth article on aldehyde oxidation has been pubHshed (43). [Pg.336]

Aldehydes are important products at all pressures, but at low pressures, acids are not. Carbon monoxide is an important low pressure product and declines with increasing pressure as acids increase. This is evidence for competition between reaction sequence 18—20 and reaction 21. Increasing pressure favors retention of the parent carbon skeleton, in concordance with the reversibiUty of reaction 2. Propylene becomes an insignificant product as the pressure is increased and the temperature is lowered. Both acetone and isopropyl alcohol initially increase as pressure is raised, but acetone passes through a maximum. This increase in the alcohoLcarbonyl ratio is similar to the response of the methanoLformaldehyde ratio when pressure is increased in methane oxidation. [Pg.341]

Other processes described in the Hterature for the production of malonates but which have not gained industrial importance are the reaction of ketene [463-51-4] with carbon monoxide in the presence of alkyl nitrite and a palladium salt as a catalyst (35) and the reaction of dichioromethane [75-09-2] with carbon monoxide in the presence of an alcohol, dicobalt octacarbonyl, and an imida2ole (36). [Pg.467]

Sihca is reduced to siUcon at 1300—1400°C by hydrogen, carbon, and a variety of metallic elements. Gaseous siUcon monoxide is also formed. At pressures of >40 MPa (400 atm), in the presence of aluminum and aluminum haUdes, siUca can be converted to silane in high yields by reaction with hydrogen (15). SiUcon itself is not hydrogenated under these conditions. The formation of siUcon by reduction of siUca with carbon is important in the technical preparation of the element and its alloys and in the preparation of siUcon carbide in the electric furnace. Reduction with lithium and sodium occurs at 200—250°C, with the formation of metal oxide and siUcate. At 800—900°C, siUca is reduced by calcium, magnesium, and aluminum. Other metals reported to reduce siUca to the element include manganese, iron, niobium, uranium, lanthanum, cerium, and neodymium (16). [Pg.471]

Other important uses of stannic oxide are as a putty powder for polishing marble, granite, glass, and plastic lenses and as a catalyst. The most widely used heterogeneous tin catalysts are those based on binary oxide systems with stannic oxide for use in organic oxidation reactions. The tin—antimony oxide system is particularly selective in the oxidation and ammoxidation of propylene to acrolein, acryHc acid, and acrylonitrile. Research has been conducted for many years on the catalytic properties of stannic oxide and its effectiveness in catalyzing the oxidation of carbon monoxide at below 150°C has been described (25). [Pg.65]

The only industrially important processes for the manufacturing of synthetic benzaldehyde involve the hydrolysis of benzal chloride [98-87-3] and the air oxidation of toluene. The hydrolysis of benzal chloride, which is produced by the side-chain chlorination of toluene, is the older of the two processes. It is no longer utilized ia the United States. Other processes, including the oxidation of benzyl alcohol, the reduction of benzoyl chloride, and the reaction of carbon monoxide and benzene, have been utilized ia the past, but they no longer have any iadustrial appHcation. [Pg.34]

The bonding between carbon monoxide and transition-metal atoms is particularly important because transition metals, whether deposited on soHd supports or present as discrete complexes, are required as catalysts for the reaction between carbon monoxide and most organic molecules. A metal—carbon ( -bond forms by overlapping of metal orbitals with orbitals on carbon. Multiple-bond character between the metal and carbon occurs through formation of a metal-to-CO TT-bond by overlap of metal-i -TT orbitals with empty antibonding orbitals of carbon monoxide (Fig. 1). [Pg.50]

With Unsaturated Compounds. The reaction of unsaturated organic compounds with carbon monoxide and molecules containing an active hydrogen atom leads to a variety of interesting organic products. The hydroformylation reaction is the most important member of this class of reactions. When the hydroformylation reaction of ethylene takes place in an aqueous medium, diethyl ketone [96-22-0] is obtained as the principal product instead of propionaldehyde [123-38-6] (59). Ethylene, carbon monoxide, and water also yield propionic acid [79-09-4] under mild conditions (448—468 K and 3—7 MPa or 30—70 atm) using cobalt or rhodium catalysts containing bromide or iodide (60,61). [Pg.52]

Carbon monoxide [630-08-0] (qv), CO, the most important 7T-acceptor ligand, forms a host of neutral, anionic, and cationic transition-metal complexes. There is at least one known type of carbonyl derivative for every transition metal, as well as evidence supporting the existence of the carbonyls of some lanthanides (qv) and actinides (1) (see AcTINIDES AND THANSACTINIDES COORDINATION COMPOUNDS). [Pg.62]

Garbonylation of Olefins. The carbonylation of olefins is a process of immense industrial importance. The process includes hydroformylation and hydrosdylation of an olefin. The hydroformylation reaction, or oxo process (qv), leads to the formation of aldehydes (qv) from olefins, carbon monoxide, hydrogen, and a transition-metal carbonyl. The hydro sdylation reaction involves addition of a sdane to an olefin (126,127). One of the most important processes in the carbonylation of olefins uses Co2(CO)g or its derivatives with phosphoms ligands as a catalyst. Propionaldehyde (128) and butyraldehyde (qv) (129) are synthesized industrially according to the following equation ... [Pg.69]

Easily decomposed, volatile metal carbonyls have been used in metal deposition reactions where heating forms the metal and carbon monoxide. Other products such as metal carbides and carbon may also form, depending on the conditions. The commercially important Mond process depends on the thermal decomposition of Ni(CO)4 to form high purity nickel. In a typical vapor deposition process, a purified inert carrier gas is passed over a metal carbonyl containing the metal to be deposited. The carbonyl is volatilized, with or without heat, and carried over a heated substrate. The carbonyl is decomposed and the metal deposited on the substrate. A number of papers have appeared concerning vapor deposition techniques and uses (170—179). [Pg.70]

Hydrocarbons from Synthesis Gas and Methanol. Two very important catalytic processes in which hydrocarbons are formed from synthesis gas are the Sasol Eischer-Tropsch process, in which carbon monoxide and hydrogen obtained from coal gasification are converted to gasoline and other products over an iron catalyst, and the Mobil MTG process, which converts methanol to gasoline range hydrocarbons using ZSM-5-type 2eohte catalysts. [Pg.199]

Beyond the catalytic ignition point there is a rapid increase in catalytic performance with small increases in temperature. A measure of catalyst performance has been the temperature at which 50% conversion of reactant is achieved. For carbon monoxide this is often referred to as CO. The catalyst light-off property is important for exhaust emission control because the catalyst light-off must occur rehably every time the engine is started, even after extreme in-use engine operating conditions. [Pg.488]

The most important route for the production of formaldehyde is from methanol, this normally being prepared by interaction of carbon monoxide and hydrogen. [Pg.532]

For intermediate temperatures from 400-1000°C (Fig. 11), the volatilization of carbon atoms by energetic plasma ions becomes important. As seen in the upper curve of Fig. 11, helium does not have a chemical erosion component of its sputter yield. In currently operating machines the two major contributors to chemical erosion are the ions of hydrogen and oxygen. The typical chemical species which evolve from the surface, as measured by residual gas analysis [37] and optical emission [38], are hydrocarbons, carbon monoxide, and carbon dioxide. [Pg.414]

Combustion processes are the most important source of air pollutants. Normal products of complete combustion of fossil fuel, e.g. coal, oil or natural gas, are carbon dioxide, water vapour and nitrogen. However, traces of sulphur and incomplete combustion result in emissions of carbon monoxide, sulphur oxides, oxides of nitrogen, unburned hydrocarbons and particulates. These are primary pollutants . Some may take part in reactions in the atmosphere producing secondary pollutants , e.g. photochemical smogs and acid mists. Escaping gas, or vapour, may... [Pg.502]

Emissions to the atmosphere from ammonia plants include sulfur dioxide (SOj), nitrogen oxides (NOJ, carbon monoxide (CO), carbon dioxide (COj), hydrogen sulfide (HjS), volatile organic compounds (VOCs), particulate matter, methane, hydrogen cyanide, and ammonia. The two primary sources of pollutants, with typical reported values, in kilograms per ton (kg/t) for the important pollutants, are as follows ... [Pg.65]


See other pages where Carbon monoxide importance is mentioned: [Pg.645]    [Pg.645]    [Pg.357]    [Pg.102]    [Pg.163]    [Pg.308]    [Pg.76]    [Pg.387]    [Pg.494]    [Pg.511]    [Pg.469]    [Pg.74]    [Pg.476]    [Pg.179]    [Pg.55]    [Pg.327]    [Pg.369]    [Pg.212]    [Pg.421]    [Pg.377]    [Pg.395]    [Pg.461]    [Pg.62]    [Pg.70]    [Pg.70]    [Pg.381]    [Pg.81]    [Pg.296]    [Pg.272]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



© 2024 chempedia.info