Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Very long-chain

Without carbon, the basis for life would be impossible. While it has been thought that silicon might take the place of carbon in forming a host of similar compounds, it is now not possible to form stable compounds with very long chains of silicon atoms. The atmosphere of Mars contains 96.2% CO2. Some of the most important compounds of carbon are carbon dioxide (CO2), carbon monoxide (CO), carbon disulfide (CS2), chloroform (CHCb), carbon tetrachloride (CCk), methane (CHr), ethylene (C2H4), acetylene (C2H2), benzene (CeHe), acetic acid (CHsCOOH), and their derivatives. [Pg.16]

One limitation of this method that should immediately come to mind is the restriction to relatively low molecular weight polymers. This is a corollary of the fact that chain ends are inconsequential for very long chains. Hence, the sensitivity of the method decreases as the molecular weight of the polymer increases. As a general rule, molecular weights in the neighborhood of 25,000 represent the upper limit for applicability of this method. [Pg.30]

It is usual to think that plastics are a relatively recent development but in fact, as part of the larger family called polymers, they are a basic ingredient of animal and plant life. Polymers are different from metals in the sense that their structure consists of very long chain-like molecules. Natural materials such as silk, shellac, bitumen, rubber and cellulose have this type of structure. However, it was not until the 19th century that attempts were made to develop a synthetic... [Pg.1]

In a thermoplastic material the very long chain-like molecules are held together by relatively weak Van der Waals forces. A useful image of the structure is a mass of randomly distributed long strands of sticky wool. When the material is heated the intermolecular forces are weakened so that it becomes soft and flexible and eventually, at high temperatures, it is a viscous melt. [Pg.3]

Since these microscopic simulations typically can only treat short times and small samples, it is important to avoid surface effects. It is common to employ periodic boundary conditions. A special trick often used for these kinds of simulation is, instead of simulating a melt of many chains, to simulate one very long chain which falls back again and again into the box. In this way, the effect of the chain ends, which introduces artificially high free volume can be reduced. However, one should keep in mind that this chain interacts with its own periodic images. It is known that this may... [Pg.487]

Fatty acid transport protein paralogues 1-6 FATP 1-6 Gene symbols SLC27A1-6 Solute carrier family 27A Very long-chain acyl-CoA synthetase VLCS... [Pg.494]

Fatty acid transport proteins (FATPs) are an evolutionary conserved family of integral membrane proteins found at the plasma membrane and on internal membranes. FATPs facilitate the unidirectional uptake and/ or intracellular activation of unesterified long-chain and very long-chain fatty acids (LCFAs) into a variety of lipid-metabolizing cells and tissues. [Pg.494]

In vitro and ex vivo studies have shown that FATPs transport LCFAs and very long-chain fatty acids (VLCFAs) but no medium-chain fatty acids, fatty acid esters, or lipid-soluble vitamins [4]. LCFA transport is inhibited by prior protease treatment. Synthetic substrates for FATPs include 14C-labeled fatty acids and the fluorescently labeled fatty acid analogue C1 -BODEP Y-Cl 2. Using the latter substrate, differences in fatty acid uptake kinetics between FATP expressing 3T3 LI adipocytes and 3T3 LI fibroblasts, which are devoid of FATPs, can be readily appreciated (Fig. 2). [Pg.496]

Long-chain fatty acids (LCFAs) are aliphatic compounds with a terminal carboxyl group and with a chain length greater than 12 carbon atoms (e.g., lauric acid). Very long-chain fatty acids are fatty acids with more than 18 carbon atoms (e.g., stearic acid). [Pg.704]

Venus Flytrap Module Very Long-chain Acyl-CoA Synthetase Very Low-density Lipoprotein Vesicle... [Pg.1505]

From the chain length dependence of Tm, the expression AS°/AHl = 7, M is obtained where Tm> cannot be the real transition temperature for very long chains because the AON model is not valid for the latter. [Pg.191]

Enzymes 7,9, and 13 form a trifunctional protein associated with the inner face of the inner mitochondrial membrane. Very-long-chain acyl-CoA dehydrogenase is also associated with other inner mitochondrial membranes while the other enzymes are in the matrix and may be loosely associated with the inner face of the inner membrane. A medium-chain 2-enoyl-CoA hydratase may also be present in the mitochondrial matrix. [Pg.114]

Because of the atoms freedom to rotate about single bonds, a chain of carbon atoms can achieve various positions in space. On one extreme is the zig-zag extended chain and on the other is a coil. Such spatial structures become particularly important in determining properties of very long chained compounds known as polymers (Chapter 5). [Pg.43]

Peroxisomes Oxidize Very Long Chain Fatty Acids... [Pg.182]

A modified form of P-oxidation is found in peroxisomes and leads to the formation of acetyl-CoA and H2O2 (from the flavoprotein-linked dehydrogenase step), which is broken down by catalase. Thus, this dehydrogenation in peroxisomes is not linked directly to phosphorylation and the generation of ATP. The system facilitates the oxidation of very long chain fatty acids (eg, Cjq, C22). These enzymes are induced by... [Pg.182]

Interest in import of proteins into peroxisomes has been stimulated by studies on Zellweger syndrome. This condition is apparent at birth and is characterized by profound neurologic impairment, victims often dying within a year. The number of peroxisomes can vary from being almost normal to being virtually absent in some patients. Biochemical findings include an accumulation of very long chain fatty acids, abnormalities of... [Pg.503]

Linear polymers may exhibit elastic behavior with good recovery if the molecular weight is very high (10 or more), owing to the slow rate of relaxation of very long chains. [Pg.433]

Yano, I. Analysis of bacterial metabolites and components by computerized GC/MS system—From shorter chain acids to very long-chain compounds up to C80. Rapid Meth. Autom. Microbiol. Immunol. (4th Int. Symp.) 1985,239-247. [Pg.58]

Very long-chain (C,n-C9S) acids Rare and minor Common and substantial... [Pg.16]

In suberizing potato tuber disks, labeled oleic acid was incorporated into co-hy-droxyoleic acid and the corresponding dicarboxylic acid, the two major aliphatic components of potato suberin [73]. Exogenous labeled acetate was also incorporated into all of the aliphatic components of suberin, including the very long chain acids and alcohols in the wound-healing potato slices. The time-course of incorporation of the labeled precursors into the suberin components was consistent with the time-course of suberization. The biosynthetic pathway for the major aliphatic components of suberin is shown in Fig. 8a. [Pg.25]

The unique suberin components that are not found as significant components of cutin are the very long chain molecules and the dicarboxylic acids. Therefore, chain elongation and conversion of co-hydroxy acids to the corresponding dicarboxylic acids constitute two unique biochemical processes involved in the synthesis of suberin. Incorporation of labeled acetate into the very long chain components of suberin was demonstrated and this ability developed during suberization in potato tuber disks [73]. The enzymes involved... [Pg.25]

How the aliphatic monomers are incorporated into the suberin polymer is not known. Presumably, activated co-hydroxy acids and dicarboxylic acids are ester-ified to the hydroxyl groups as found in cutin biosynthesis. The long chain fatty alcohols might be incorporated into suberin via esterification with phenylpro-panoic acids such as ferulic acid, followed by peroxidase-catalyzed polymerization of the phenolic derivative. This suggestion is based on the finding that ferulic acid esters of very long chain fatty alcohols are frequently found in sub-erin-associated waxes. The recently cloned hydroxycinnamoyl-CoA tyramine N-(hydroxycinnamoyl) transferase [77] may produce a tyramide derivative of the phenolic compound that may then be incorporated into the polymer by a peroxidase. The glycerol triester composed of a fatty acid, caffeic acid and a>-hydroxy acid found in the suberin associated wax [40] may also be incorporated into the polymer by a peroxidase. [Pg.27]

Herrmann, T., et al. Mouse fatty acid transport protein 4 (FATP4) characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 2001, 270,... [Pg.285]


See other pages where Very long-chain is mentioned: [Pg.613]    [Pg.44]    [Pg.324]    [Pg.343]    [Pg.1000]    [Pg.496]    [Pg.497]    [Pg.497]    [Pg.1279]    [Pg.980]    [Pg.32]    [Pg.112]    [Pg.196]    [Pg.889]    [Pg.21]    [Pg.99]    [Pg.386]    [Pg.156]    [Pg.341]    [Pg.360]    [Pg.365]    [Pg.61]    [Pg.89]    [Pg.89]    [Pg.15]    [Pg.29]    [Pg.196]   


SEARCH



Fatty very long-chain

How Common Is Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency

Omega-3 very long-chain polyunsaturated fatty

Omega-3 very long-chain polyunsaturated fatty acids

Very Long-chain Acyl-CoA Synthetase

Very long chain fatty acid elongase

Very long chain fatty acids

Very long chain fatty acids adrenoleukodystrophy

Very long chain fatty acids oxidation

Very long chain fatty acids plants

Very long chain polyunsaturated fatty acid

Very long-chain acids

Very long-chain acids synthesis

Very long-chain acyl-CoA

Very long-chain acyl-CoA dehydrogenase

Very long-chain acyl-CoA dehydrogenase deficiency

Very long-chain acyl-coenzyme A dehydrogenase

Very long-chain fatty alcohols

Very-long-chain fatty acids VLDL)

Very-long-chain fatty acids composition

Very-long-chain fatty acids metabolism

Very-long-chain fatty acids triacylglycerol synthesis

What Genes Are Related to Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency

© 2024 chempedia.info