Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inert carrier

Equilibrium Theory. The general features of the dynamic behavior may be understood without recourse to detailed calculations since the overall pattern of the response is governed by the form of the equiUbrium relationship rather than by kinetics. Kinetic limitations may modify the form of the concentration profile but they do not change the general pattern. To illustrate the different types of transition, consider the simplest case an isothermal system with plug flow involving a single adsorbable species present at low concentration in an inert carrier, for which equation 30 reduces to... [Pg.261]

Adsorption Chromatography. The principle of gas-sohd or Hquid-sohd chromatography may be easily understood from equation 35. In a linear multicomponent system (several sorbates at low concentration in an inert carrier) the wave velocity for each component depends on its adsorption equihbrium constant. Thus, if a pulse of the mixed sorbate is injected at the column inlet, the different species separate into bands which travel through the column at their characteristic velocities, and at the oudet of the column a sequence of peaks corresponding to the different species is detected. [Pg.264]

The fluid plasticizer (solvent) consists of an energetic compound, eg, nitroglycerin, an inert carrier, and a stabilizer. The system is evacuated to remove volatiles, moisture, and air, and the plasticizer is then pressurized and passed slowly upward through the powder bed while the powder is held stationary by a pressure plate on the powder column. Casting solvent may also be added from the top of the mold. [Pg.47]

Oxidation of methanol to formaldehyde with vanadium pentoxide catalyst was first patented in 1921 (90), followed in 1933 by a patent for an iron oxide—molybdenum oxide catalyst (91), which is stiU the choice in the 1990s. Catalysts are improved by modification with small amounts of other metal oxides (92), support on inert carriers (93), and methods of preparation (94,95) and activation (96). In 1952, the first commercial plant using an iron—molybdenum oxide catalyst was put into operation (97). It is estimated that 70% of the new formaldehyde installed capacity is the metal oxide process (98). [Pg.494]

V-Alkylation can also be carried out with the appropriate alkyl haUde or alkyl sulfate. Reaction of aniline with ethylene, in the presence of metallic sodium supported on an inert carrier such as carbon or alumina, at high temperature and pressure yields V/-ethyl- or /V,/V-diethylaniline (11). At pressures below 10 MPa (100 atm), the monosubstituted product predominates. [Pg.229]

The predominant process for manufacture of aniline is the catalytic reduction of nitroben2ene [98-95-3] ixh. hydrogen. The reduction is carried out in the vapor phase (50—55) or Hquid phase (56—60). A fixed-bed reactor is commonly used for the vapor-phase process and the reactor is operated under pressure. A number of catalysts have been cited and include copper, copper on siHca, copper oxide, sulfides of nickel, molybdenum, tungsten, and palladium—vanadium on alumina or Htbium—aluminum spinels. Catalysts cited for the Hquid-phase processes include nickel, copper or cobalt supported on a suitable inert carrier, and palladium or platinum or their mixtures supported on carbon. [Pg.231]

Sodium is commonly shipped in 36- to 70-t tank cars in the United States. Smaller amounts are shipped in 16-t tank tmcks or ISO-tanks. Sodium is also available in 104- and 190-kg dmms, and in bricks (0.5—5 kg). A thin layer of oxide, hydroxide, or carbonate is usually present. Sodium is also marketed in small lots as a dispersion in an inert hydrocarbon, or produced in-process via high pressure injection into a pumped stream of inert carrier fluid, such as toluene or mineral oil. [Pg.168]

Two types of immobilization are used for immobilizing glucose isomerase. The intracellular enzyme is either immobilized within the bacterial cells to produce a whole-ceU product, or the enzyme is released from the cells, recovered, and immobilized onto an inert carrier. An example of the whole-ceU process is one in which cells are dismpted by homogenization, cross-linked with glutaraldehyde, flocculated using a cationic flocculent, and extmded (42). [Pg.294]

Easily decomposed, volatile metal carbonyls have been used in metal deposition reactions where heating forms the metal and carbon monoxide. Other products such as metal carbides and carbon may also form, depending on the conditions. The commercially important Mond process depends on the thermal decomposition of Ni(CO)4 to form high purity nickel. In a typical vapor deposition process, a purified inert carrier gas is passed over a metal carbonyl containing the metal to be deposited. The carbonyl is volatilized, with or without heat, and carried over a heated substrate. The carbonyl is decomposed and the metal deposited on the substrate. A number of papers have appeared concerning vapor deposition techniques and uses (170—179). [Pg.70]

Dry reduced nickel catalyst protected by fat is the most common catalyst for the hydrogenation of fatty acids. The composition of this type of catalyst is about 25% nickel, 25% inert carrier, and 50% soHd fat. Manufacturers of this catalyst include Calsicat (Mallinckrodt), Harshaw (Engelhard), United Catalysts (Sud Chemie), and Unichema. Other catalysts that stiH have some place in fatty acid hydrogenation are so-called wet reduced nickel catalysts (formate catalysts), Raney nickel catalysts, and precious metal catalysts, primarily palladium on carbon. The spent nickel catalysts are usually sent to a broker who seUs them for recovery of nickel value. Spent palladium catalysts are usually returned to the catalyst suppHer for credit of palladium value. [Pg.91]

Another technological area that relies on particle adhesion is pharmacology. Consider, for example, an aerosol-dispensed medication. Here, the active ingredient relies on its adhering to inert carrier particles to be dispensed. However, it is crucial that the carrier particles do not adhere to the container walls, or much of the medication would never reach the patient. [Pg.141]

The glass membrane of the electrodes discussed above may be replaced by other materials such as a single crystal or a disc pressed from finely divided crystalline material it may be advantageous to incorporate the crystalline material into an inert carrier such as a suitable polymer thus producing a heterogeneous-membrane electrode. [Pg.559]

Its main features are given by the use of a stream of inert carrier gas which percolates through a bed of an adsorbent covered with adsorbate and heated in a defined way. The desorbed gas is carried off to a detector under conditions of no appreciable back-diffusion. This means that the actual concentration of the desorbed species in the bed is reproduced in the detector after a time lag which depends on the flow velocity and the distance. The theory of this method has been developed for a linear heating schedule, first-order desorption kinetics, no adsorbable component in the entering carrier gas (Pa = 0), and the Langmuir concept, and has already been reviewed (48, 49) so that it will not be dealt with here. An analysis of how closely the actual experimental conditions meet the idealized model is not available. [Pg.372]

A gas-liquid-particle process termed cold hydrogenation has been developed for this purpose. The hydrogenation is carried out in fixed-bed operation, the liquefied hydrocarbon feed trickling downwards in a hydrogen atmosphere over the solid catalyst, which may be a noble metal catalyst on an inert carrier. Typical process conditions are a temperature of 10°-20°C and a pressure of 2.5-7 atm gauge. The hourly throughput is as high as 20-kg hydrocarbon feed per liter of catalyst volume. [Pg.74]

It has been pointed out (S2) that this type of operation might be widely applicable for organic oxidation processes, provided suitable inert carrier liquids can be found. It may be noted in this connection that the liquid must be reasonably resistant against oxidation and that it must not cause catalyst deactivation—for example, by chemisorption. [Pg.78]

The effect has attracted considerable interest, when the mechanism of heterogeneous thermo- and photoprocesses on the so-called deposited metal catalysts was studied. The catalysts usually consist of two components an inert carrier (AI2O3, Si02, etc.) and an activator. The role of an activator is usually played by metals (Pt, Pd, Ni, etc.) dispersed on the surface of a carrier. [Pg.244]

Newer mesalamine products utilize non-sulfapyridine methods for drug delivery. Olsalazine uses two mesalamine molecules linked together, while balsalazide uses the inert carrier molecule 4-aminobenzoyl-P-alanine. Both drugs use a diazo bond similar to sulfasalazine. Other mesalamine formulations are pH-dependent formulations that release mesalamine at various points throughout the GI tract. [Pg.287]

The ions or cluster ions are thermalized by collisions with an inert carrier gas (usually helium), although often argon or even nitrogen is employed. Neutral reactant gas is added through a reactant gas inlet at an appropriate location downstream in the flow tube, and allowed to react with the injected ions. Rate coefficients, k, are determined by establishing pseudo-first-order reaction conditions in which the reactant ion concentration is small compared to the reactant neutral concentration. Bimolecular rate coefficients, k, are obtained from the slope of the natural logarithm of the measured signal intensity, /, of the reactant ion versus the flow rate (2b of reactant gas 45,48-50... [Pg.188]

Benzene chemisorption on platinum-alumina in the range 26°-470°C has been measured in a flow system by Pitkethly and Goble (7). A small dose of benzene was injected into a stream of inert carrier gas and transported to the reactor the effluent was then sampled repeatedly and analyzed by gas-liquid chromatography. Information concerning the adsorption and desorption of benzene was obtained from the shape of the subsequent benzene concentration versus time curves. Evidence was obtained for four types of adsorption of benzene ... [Pg.124]

A method was devised for the precise measurement of the flow of dense vapours dissolved in an inert carrier gas, and was demonstrated with a stream of tetraethylgermane vapour34. [Pg.346]

The nematodes are placed in inert carriers such as sponge and vermiculite that... [Pg.360]

Although there is no consistent explanation of the relationship between organic polymer morphology and electrical properties,51 amorphous structures are generally preferred over a crystalline structure. An experiment was conducted to study the structure of the fdm deposited using an inert carrier gas. The PNT-N... [Pg.301]

As Figure 11.26 undoubtedly demonstrates, the deviation between the same catalytic material under practically identical reaction conditions is in the range of 2% conversion (if appropriate measures are taken this error can be reduced to 0.5%). These experimental data points lead to the important verification of the above-discussed CFD modeling results and confirm the assumption of realizing identical reaction conditions over the whole reactor system independent from the position of a catalyst to be tested. By testing inert carrier material in reactor column number 8, the inertness and catalytic inactivity of the reactor steel can be proven. [Pg.405]

Figure 11.26 Plot of the position sensitivity of the degree of conversion for a set of 48 bismuth-molybdate catalysts (same batch) in propylene to acrolein conversion in a Stage II 48-fold-screening reactor (reaction conditions 2% hydrocarbon in air at GHSV of 3000 h-1, column no. 8 contains only inert carrier material). Figure 11.26 Plot of the position sensitivity of the degree of conversion for a set of 48 bismuth-molybdate catalysts (same batch) in propylene to acrolein conversion in a Stage II 48-fold-screening reactor (reaction conditions 2% hydrocarbon in air at GHSV of 3000 h-1, column no. 8 contains only inert carrier material).

See other pages where Inert carrier is mentioned: [Pg.2949]    [Pg.261]    [Pg.466]    [Pg.80]    [Pg.421]    [Pg.55]    [Pg.223]    [Pg.2225]    [Pg.111]    [Pg.249]    [Pg.345]    [Pg.151]    [Pg.346]    [Pg.356]    [Pg.336]    [Pg.176]    [Pg.4]    [Pg.544]    [Pg.469]    [Pg.301]    [Pg.24]    [Pg.108]    [Pg.380]    [Pg.360]    [Pg.536]    [Pg.154]    [Pg.124]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



© 2024 chempedia.info