Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal complex cations

Barlow, C.K. Hodges, B.D.M. Xia, Y. O Hair, R.A.J. McLuckey, S.A. Gas-phase ion/ ion reactions of transition metal complex cations with multiply charged oligodeoxynu-cleotide anions. J. Am. Soc. Mass Spectrom. 2008,19, 281-293. [Pg.30]

Carbon monoxide [630-08-0] (qv), CO, the most important 7T-acceptor ligand, forms a host of neutral, anionic, and cationic transition-metal complexes. There is at least one known type of carbonyl derivative for every transition metal, as well as evidence supporting the existence of the carbonyls of some lanthanides (qv) and actinides (1) (see AcTINIDES AND THANSACTINIDES COORDINATION COMPOUNDS). [Pg.62]

Stable transition-metal complexes may act as homogenous catalysts in alkene polymerization. The mechanism of so-called Ziegler-Natta catalysis involves a cationic metallocene (typically zirconocene) alkyl complex. An alkene coordinates to the complex and then inserts into the metal alkyl bond. This leads to a new metallocei e in which the polymer is extended by two carbons, i.e. [Pg.251]

Both the cation and the anion of an ionic liquid can act as a ligand or ligand precursor for a transition metal complex dissolved in the ionic liquid. [Pg.222]

With respect to the ionic liquid s cation the situation is quite different, since catalytic reactions with anionic transition metal complexes are not yet very common in ionic liquids. However, an imidazolium moiety as an ionic liquid cation can act as a ligand precursor for the dissolved transition metal. Its transformation into a lig-... [Pg.222]

As well as phosphorus ligands, heterocyclic carbenes ligands 10 have proven to be interesting donor ligands for stabilization of transition metal complexes (especially palladium) in ionic liquids. The imidazolium cation is usually presumed to be a simple inert component of the solvent system. However, the proton on the carbon atom at position 2 in the imidazolium is acidic and this carbon atom can be depro-tonated by, for example, basic ligands of the metal complex, to form carbenes (Scheme 5.3-2). [Pg.269]

The dominant features which control the stoichiometry of transition-metal complexes relate to the relative sizes of the metal ions and the ligands, rather than the niceties of electronic configuration. You will recall that the structures of simple ionic solids may be predicted with reasonable accuracy on the basis of radius-ratio rules in which the relative ionic sizes of the cations and anions in the lattice determine the structure adopted. Similar effects are important in determining coordination numbers in transition-metal compounds. In short, it is possible to pack more small ligands than large ligands about a metal ion of a given size. [Pg.167]

This chapter is concerned with the simplest reactions of inert transition metal complexes. Fig. 1 shows a typical compound. This is Co(III) coordinated to six NHj molecules to form a triply positive cation [Co(NH3)6]. It is indicated in Fig. 1 to be in aqueous solution where water molecules occupy positions in what... [Pg.1]

In 2007, Fernandez et al. demonstrated that transition-metal complexes with heterobidentate S/C ligands based on imidazopyridin-3-ylidene and thioether functionalities could be readily prepared from the corresponding azolium salts by reaction with Ag20 and transmetalation of the resulting silver carbenes with appropriate metal sources. The cationic Pd(allyl)(carbene-S) complexes have proven to be active catalysts in the test reaction, reaching enantioselectivities of... [Pg.40]

During the last years, more and more researchers have applied density functional theory to small transition-metal complexes and benchmarked the results against either high level wave function based methods or experimental data. A particular set of systems for which reasonably accurate benchmark data are available are the cationic M+-X complexes, where X is H, CH3 or CH2. Let us start our discussion with the cationic hydrides of the 3d transition-metals. [Pg.175]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

The release of N2 occurs within function 3. It involves the dissociation of NO (via a dinitrosyl-adsorbed intermediate), followed by subsequent formation of N2 and scavenging of the adsorbed oxygen species left from NO dissociation. The removal of adsorbed oxygen is due to the total oxidation of an activated reductant (CxHyOz). This reaction corresponds to a supported homogeneous catalytic process involving a surface transition metal complex. The corresponding catalytic sequence of elementary steps occurs in the coordinative sphere of the metal cation. [Pg.145]

The important feature is the formation of a coordinatively unsaturated site (cus), permitting the reaction to occur in the coordinative sphere of the metal cation. The cus is a metal cationic site that is able to present at least three vacancies permitting, in the DeNOx process, to insert ligands such as NO, CO, H20, and any olefin or CxHyOz species that is able to behave like ligands in its coordinative environment. A cus can be located on kinks, ledges or corners of crystals [16] in such a location, they are unsaturated. This situation is quite comparable to an exchanged cation in a zeolite, as studied by Iizuka and Lundsford [17] or to a transition metal complex in solution, as studied by Hendriksen et al. [18] for NO reduction in the presence of CO. [Pg.147]

A chiral diphosphine ligand was bound to silica via carbamate links and was used for enantioselective hydrogenation.178 The activity of the neutral catalyst decreased when the loading was increased. It clearly indicates the formation of catalytically inactive chlorine-bridged dimers. At the same time, the cationic diphosphine-Rh catalysts had no tendency to interact with each other (site isolation).179 New cross-linked chiral transition-metal-complexing polymers were used for the chemo- and enantioselective epoxidation of olefins.180... [Pg.261]

The possibility of adjusting acidity/coordination properties opens up a wide range of possible interactions between the ionic liquid solvent and the dissolved transition metal complex. Depending on the acidity/coordination properties of the anion and on the reactivity of the cation (the possibility of carbene ligand formation from 1,3-dialkylimidazolium salts is of particular importance here [37]), the ionic liquid can be regarded as an innocent solvent, as a ligand precursor, as a co-catalyst or as the catalyst itself. [Pg.188]

TTF CH=CH py)2] (PF6)- 2CH2C12 was the first radical cation salt of a paramagnetic transition metal complex containing TTF CH=CH py as ligand. [Pg.66]

A large number of transition metal complexes whose cationic complexes are 10- to 16-electron species (including those with the ligands summarized in Fig. 7) were investigated to determine their potential as ethylene polymerization catalysts with methyaluminoxane (MAO) activation at 25 °C under atmospheric pressure. As a result, we discovered a number of high-activity catalysts for ethylene polymerization that contain electronically flexible ligands [11]. [Pg.9]

Polymeric pseudocrown ether networks have been generated in situ by the photopolymerization of poly(ethylene glycol) diacrylate transition metal complexes <00CM633>, and the effect of metal ion templation was evaluated. The 1,6,13,18-tetraoxa[6.6]paracyclophane-3,15-diyne (termed pyxophanes) was prepared from hydroquinone and l,4-dichlorobut-2-yne it forms size-selective 7i-complexes with alkali metal cations <00CC2377>. Dibenzo[ ]crown-m have been used in numerous elegant studies in which they were the needles that were threaded by diverse reagents the resultant... [Pg.379]

Lee et al. [103] synthesized a chiral Rh-complex with a bisphosphine-contain-ing cation as ligand (Fig. 41.8, 2) to improve the immobilization of the transition-metal complex within the ionic liquid. [Pg.1406]

The most significant class of inorganic supports, which is used for the direct ion exchange of positively charged transition-metal complexes, are smectite clays. Pin-navaia has introduced the use of these swelling, layered silicate clays for catalysis. Other clays include montmorillonite, bentonite, and laponite. As shown by Pinna-vaia, cationic transition-metal complexes can be readily exchanged (intercalated) into the solvated interlayers of these silicates (Eq. (1)) [117] ... [Pg.1455]


See other pages where Transition metal complex cations is mentioned: [Pg.670]    [Pg.75]    [Pg.240]    [Pg.670]    [Pg.20]    [Pg.73]    [Pg.83]    [Pg.95]    [Pg.670]    [Pg.75]    [Pg.240]    [Pg.670]    [Pg.20]    [Pg.73]    [Pg.83]    [Pg.95]    [Pg.169]    [Pg.221]    [Pg.222]    [Pg.244]    [Pg.345]    [Pg.106]    [Pg.196]    [Pg.161]    [Pg.11]    [Pg.326]    [Pg.327]    [Pg.269]    [Pg.51]    [Pg.620]    [Pg.83]    [Pg.92]    [Pg.40]    [Pg.202]    [Pg.238]    [Pg.263]    [Pg.121]    [Pg.110]   
See also in sourсe #XX -- [ Pg.20 ]




SEARCH



Acetonitrile Complexes of Selected Transition Metal Cations

Cationic complexes transition metal dithiocarbamates

Cationic metal complexes

Complex formation transition metal cation with

Metal cation complexes

Metals, cationic

Transition Metal Complexes Containing Anionic or Cationic Ligands

Transition cations

Transition metal cation

Trivalent cation transition metal complexes

© 2024 chempedia.info