Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Auger electron spectroscopy-SIMS surface analysis

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

The most widely used techniques for surface analysis are Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), Raman and infrared spectroscopy, and contact angle measurement. Some of these techniques have the ability to determine the composition of the outermost atomic layers, although each technique possesses its own special advantages and disadvantages. [Pg.517]

X-ray scattering studies at a renewed pc-Ag/electrolyte interface366,823 provide evidence for assuming that fast relaxation and diffu-sional processes are probable at a renewed Sn + Pb alloy surface. Investigations by secondary-ion mass spectroscopy (SIMS) of the Pb concentration profile in a thin Sn + Pb alloy surface layer show that the concentration penetration depth in the solid phase is on the order of 0.2 pm, which leads to an estimate of a surface diffusion coefficient for Pb atoms in the Sn + Pb alloy surface layer on the order of 10"13 to lCT12 cm2 s i 820 ( p,emicai analysis by electron spectroscopy for chemical analysis (ESCA) and Auger ofjust-renewed Sn + Pb alloy surfaces in a vacuum confirms that enrichment with Pb of the surface layer is probable.810... [Pg.144]

Further structural information is available from physical methods of surface analysis such as scanning electron microscopy (SEM), X-ray photoelectron or Auger electron spectroscopy (XPS), or secondary-ion mass spectrometry (SIMS), and transmission or reflectance IR and UV/VIS spectroscopy. The application of both electroanalytical and surface spectroscopic methods has been thoroughly reviewed and appropriate methods are given in most of the references of this chapter. [Pg.60]

As a surface analytical tool, SIMS has several advantages over X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). SIMS is sensitive to all elements and isotopes in the periodic table, whereas XPS and AES cannot detect H and He. SIMS also has a lower detection limit of 10 5 atomic percent (at.S) compared to 0.1 at.S and 1.0 at.% for AES and XPS, respectively. However, SIMS has several disadvantages. Its elemental sensitivity varies over five orders of magnitude and differs for a given element in different sample matrices, i.e., SIMS shows a strong matrix effect. This matrix effect makes SIMS measurements difficult to quantify. Recent progress, however, has been made especially in the development of quantitative models for the analysis of semiconductors [3-5]. [Pg.161]

Some of the techniques described in this chapter used most widely today are Auger electron spectroscopy, X-ray photoelectron spectroscopy, electron-probe micro-analysis, low energy electron diffraction, scanning electron microscope, ion scattering spectroscopy, and secondary ion mass spectroscopy. The solid surface, after liberation of electrons, can be analyzed directly by AES, XPS, ISS, and EPMA (nondestructive techniques), or by liberation of ions from surfaces using SIMS (involving the destruction of the surface). Apart from the surface techniques, reflectance-absorbance infrared (RAIR) spectroscopy has also been employed for film characterization (Lindsay et al., 1993 Yin et al., 1993). Some... [Pg.144]

The tools available for surface composition characterization are electron spectroscopy for chemical analysis (ESCA), Auger spectroscopy (AES), ion scattering spectroscopy (ISS), and secondary ion mass spectroscopy (SIMS). ESCA spectroscopy is used more widely than the others for studying the surface composition and oxidation states of industrial catalysts, and thus its application will be discussed in limited detail. [Pg.122]

Surface analytical methods — Important ex situ methods for surface analysis are X-Ray Photoelectron Spectroscopy (XPS) UV-Photoelectron Spectroscopy (UPS), Auger Electron Spectroscopy (AES), Ion Scattering Spectroscopy (ISS), Rutherford Backscattering (RBS), Secondary Ion Mass Spectroscopy (SIMS), Scanning Electron Microscopy (SEM), Electron Microprobe Analysis (EMA), Low Energy Electron Diffraction (LEED), and High Energy Electron Diffraction (RHEED). [Pg.650]

Microanalytical methods are used to move further down in the characterization scale. X-ray photoelectron spectroscopy (XPS or ESCA), (see Barr) Auger electron spectroscopy (AES), and secondary ion mass spectroscopy (SIMS) as presented by Leta for imaging FCC catalysts, are surface analysis techniques providing chemical analy-... [Pg.27]

Among the various surface analysis techniques which are currently available to catalysis chemists. X-ray photoelectron spectroscopy is certainly the one having found the widest application in the study of zeolitic materials. Reflecting this significance, this text will mostly dwell upon XPS and its relevance to zeolites, with some mentions of the contributions of such other techniques as Auger Electron Spectroscopy (AES), Ion Scattering Spectroscopy (ISS) and Secondary Ion Mass Spectrometry (SIMS). [Pg.191]

Specific spectroscopic techniques are used for the analysis of polymer surface (or more correctly of a thin layer at the surface of the polymer). They are applied for the study of surface coatings, surface oxidation, surface morphology, etc. These techniques are typically done by irradiating the polymer surface with photons, electrons or ions that penetrate only a thin layer of the polymer surface. This irradiation is followed by the absorption of a part of the incident radiation or by the emission of specific radiation, which is subsequently analyzed providing information about the polymer surface. One of the most common techniques used for the study of polymer surfaces is attenuated total reflectance in IR (ATR), also known as internal reflection spectroscopy. Other techniques include scanning electron microscopy, photoacoustic spectroscopy, electron spectroscopy for chemical analysis (ESCA), Auger electron spectroscopy, secondary ion mass spectroscopy (SIMS), etc. [Pg.27]

Secondary ion mass spectrometry (SIMS) is a relatively new technique for surface chemical analysis compared with Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). SIMS examines the mass of ions, instead of energy of electrons, escaped from a solid surface to obtain information on surface chemistry. The term secondary ion is used to distinguish primary ion that is the energy source for knocking out ions from a solid surface. The advantages of SIMS over electron spectroscopy are ... [Pg.225]

Until recently, analytical investigations of surfaces were handicapped by the lack of suitable methods and instrumentation capable of supplying reliable and relevant information. Electron diffraction is an excellent way to determine the geometric arrangement of the atoms on a surface, but it does not answer the question as to the chemical composition of the upper atomic layer. The use of the electron microprobe (EMP), a powerful instrument for chemical analyses, is unfortunately limited because of its extended information depth. The first real success in the analysis of a surface layer was achieved by Auger electron spectroscopy (AES) [16,17], followed a little later by other techniques such as electron spectroscopy for chemical analysis (ESCA) and secondary-ion mass spectrometry (SIMS), etc. [18-23]. All these techniques use some type of emission (photons, electrons, atoms, molecules, ions) caused by excitation of the surface state. Each of these techniques provides a substantial amount of information. To obtain the optimum Information it is, however, often beneficial to combine several techniques. [Pg.42]

Three types of instrumentation exist for dynamic SIMS non-imaging ion probes, direct-imaging ion microanalysers and scanning ion microprobes-micro-scopes. Non-imaging ion probes are often an accessory of Auger electron spectroscopy (AES), electron spectroscopy for chemical applications (ESCA), or electron microscopy systems and allow a point analysis. Imaging equipment allows a point-to-point analysis of the surface with a primary beam of size 10—300 pm (microanalysers) or below 10 pm (microprobes-microscopes). [Pg.572]

Electron, ion, and photon emissions from the outermost layers of the particle surface can be used to reveal the qualitative or quantitative information on chemical composition of the surface of ceramic powders. The most widely used techniques include (i) Auger electron spectroscopy (AES), (ii) X-ray photoelectron spectroscopy (XPS), which is also known as electron spectroscopy for chemical analysis (ESCA), and (iii) Secondary ion mass spectrometry (SIMS). [Pg.218]

Abstract Surface analyses have been one of the key technologies for corrosion control and surface finishing. It is very important that the most appropriate apparatus for the purpose of the analyses should be selected from various analytical techniques. In this chapter, surface analytical methods for corrosion control and surface finishing, such as X-ray fluorescence analysis (XRF), X-ray diffraction analysis (XRD), X-ray photo-electron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Auger electron spectroscopy (AES), Secondary ion mass spectrometry (SIMS), Rutherford back-scattering spectrometry (RBS), Surface-enhanced Raman spectroscopy (SERS), Fourier-transform infrared spectroscopy (FTIR), and so on, are briefly introduced. [Pg.47]


See other pages where Auger electron spectroscopy-SIMS surface analysis is mentioned: [Pg.1828]    [Pg.1828]    [Pg.2725]    [Pg.604]    [Pg.700]    [Pg.33]    [Pg.157]    [Pg.448]    [Pg.305]    [Pg.10]    [Pg.137]    [Pg.17]    [Pg.27]    [Pg.132]    [Pg.279]    [Pg.287]    [Pg.379]    [Pg.381]    [Pg.252]    [Pg.89]    [Pg.279]    [Pg.287]    [Pg.405]    [Pg.440]    [Pg.282]    [Pg.4]    [Pg.288]    [Pg.98]    [Pg.380]    [Pg.340]    [Pg.113]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Analysis spectroscopy

Auger

Auger analysis

Auger electron

Auger electron spectroscopy-SIMS

Electron analysis

Electron surface analysis

Electronic spectroscopy, surface

Electronic spectroscopy, surface analysis

SIM

SIMS

Spectroscopy Auger

Spectroscopy Auger electron

Surface analysis

Surface analysis Auger electron spectroscopy

Surface analysis electron spectroscopy

Surface analysis spectroscopy

Surface electronic

Surface electrons

Surface spectroscopy

Surfaces Auger analysis

© 2024 chempedia.info