Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface analytics

The methods have in turn launched the new fields of nanoscience and nanoteclmology, in which the manipulation and characterization of nanometre-scale structures play a crucial role. STM and related methods have also been applied with considerable success in established areas, such as tribology [2], catalysis [3], cell biology [4] and protein chemistry [4], extending our knowledge of these fields into the nanometre world they have, in addition, become a mainstay of surface analytical laboratories, in the worlds of both academia and industry. [Pg.1676]

Monolayers of alkanetliiols adsorbed on gold, prepared by immersing tire substrate into solution, have been characterized by a large number of different surface analytical teclmiques. The lateral order in such layers has been investigated using electron [1431, helium [144, 1451 and x-ray [146, 1471 diffraction, as well as witli scanning probe microscopies [122, 1481. Infonnation about tire orientation of tire alkyl chains has been obtained by ellipsometry [149], infrared (IR) spectroscopy [150, 151] and NEXAFS [152]. [Pg.2624]

As a furtlier example for tire meaning of ex situ investigations of emersed electrodes witli surface analytical teclmiques, results obtained for tire double layer on poly crystalline silver in alkaline solutions are presented in figure C2.10.3. This system is of scientific interest, since tliin silver oxide overlayers (tliickness up to about 5 nm) are fonned for sufficiently anodic potentials, which implies tliat tire adsorjDtion of anions, cations and water can be studied on tire clean metal as well as on an oxide covered surface [55, 56]. For tire latter situation, a changed... [Pg.2751]

Ldutzenkirchen-Flecht D and Strehblow FI-FI 1998 Surface analytical investigations of the electrochemical double layer on silver electrodes in alkaline media Electrochim. Acta 43 2957-68... [Pg.2758]

Lutzenkirchen-Flecht D and Strehblow FI-FI 1998 Bromide adsorption on silver in alkaline solution A surface analytical study Ber. Bunsenges. Phys. Chem. 102 826-32... [Pg.2758]

REELS will continue to be an important surface analytical tool having special features, such as very high surface sensitivity over lateral distances of the order of a few pm and a lateral resolution that is uniquely immune from back scattered electron effects that degrade the lateral resolution of SAM, SEM and EDS. Its universal availability on all types of electron-excited Auger spectrometers is appealing. However in its high-intensity VEELS-form spectral overlap problems prevent widespread application of REELS. [Pg.333]

Chapter 7 (by H. Ishida and A Ishitani) review microscopic and surface analytical techniques. Chapter 8 (by D. M. Haaland) reviews developments in statistical chemometrics for data analysis. [Pg.427]

Each type of mass spectrometer has its associated advantages and disadvantages. Quadrupole-based systems offer a fairly simple ion optics design that provides a certain degree of flexibility with respect to instrument configuration. For example, quadrupole mass filters are often found in hybrid systems, that is, coupled with another surface analytical method, such as electron spectroscopy for chemical analysis or scanning Auger spectroscopy. [Pg.552]

SALI compares fiivorably with other major surface analytical techniques in terms of sensitivity and spatial resolution. Its major advantj e is the combination of analytical versatility, ease of quantification, and sensitivity. Table 1 compares the analytical characteristics of SALI to four major surfiice spectroscopic techniques.These techniques can also be categorized by the chemical information they provide. Both SALI and SIMS (static mode only) can provide molecular fingerprint information via mass spectra that give mass peaks corresponding to structural units of the molecule, while XPS provides only short-range chemical information. XPS and static SIMS are often used to complement each other since XPS chemical speciation information is semiquantitative however, SALI molecular information can potentially be quantified direedy without correlation with another surface spectroscopic technique. AES and Rutherford Backscattering (RBS) provide primarily elemental information, and therefore yield litde structural informadon. The common detection limit refers to the sensitivity for nearly all elements that these techniques enjoy. [Pg.560]

Another application involves the measurement of copper via the radioisotope Cu (12.6-hour half-life). Since Cu decays by electron capture to Ni ( Cu Ni), a necessary consequence is the emission of X rays from Ni at 7.5 keV. By using X-ray spectrometry following irradiation, sensitive Cu analysis can be accomplished. Because of the short range of the low-energy X rays, near-surface analytical data are obtained without chemical etching. A combination of neutron activation with X-ray spectrometry also can be applied to other elements, such as Zn and Ge. [Pg.678]

MOKE measurements can be made using relatively simple and inexpensive apparatus, compared to most other surface magnedc probes and surface analytical techniques. MOKE is usefid for the mj netic characterizadon of films of one to several monolayers, thin films, or the near-surface regions of bulk materials. MOKE has... [Pg.733]

Nearly all these techniques involve interrogation of the surface with a particle probe. The function of the probe is to excite surface atoms into states giving rise to emission of one or more of a variety of secondary particles such as electrons, photons, positive and secondary ions, and neutrals. Because the primary particles used in the probing beam can also be electrons or photons, or ions or neutrals, many separate techniques are possible, each based on a different primary-secondary particle combination. Most of these possibilities have now been established, but in fact not all the resulting techniques are of general application, some because of the restricted or specialized nature of the information obtained and others because of difficult experimental requirements. In this publication, therefore, most space is devoted to those surface analytical techniques that are widely applied and readily available commercially, whereas much briefer descriptions are given of the many others the use of which is less common but which - in appropriate circumstances, particularly in basic research - can provide vital information. [Pg.2]

X-ray photoelectron spectroscopy (XPS) is currently the most widely used surface-analytical technique, and is therefore described here in more detail than any of the other techniques. At its inception hy Sieghahn and coworkers [2.1] it was called ESCA (electron spectroscopy for chemical analysis), hut the name ESCA is now considered too general, because many surface-electron spectroscopies exist, and the name given to each one must be precise. The name ESCA is, nevertheless, still used in many places, particularly in industrial laboratories and their publications. Briefly, the reasons for the popularity of XPS are the exceptional combination of compositional and chemical information that it provides, its ease of operation, and the ready availability of commercial equipment. [Pg.6]

Electron spectroscopic techniques require vacuums of the order of 10 Pa for their operation. This requirement arises from the extreme surface-specificity of these techniques, mentioned above. With sampling depths of only a few atomic layers, and elemental sensitivities down to 10 atom layers (i. e., one atom of a particular element in 10 other atoms in an atomic layer), the techniques are clearly very sensitive to surface contamination, most of which comes from the residual gases in the vacuum system. According to gas kinetic theory, to have enough time to make a surface-analytical measurement on a surface that has just been prepared or exposed, before contamination from the gas phase interferes, the base pressure should be 10 Pa or lower, that is, in the region of ultrahigh vacuum (UHV). [Pg.9]

The requirement for the achievement of UHV conditions imposes restrictions on the types of material that can be used for the construction of surface-analytical systems, or inside the systems, because UHV can be achieved only by accelerating the rate of removal of gas molecules from internal surfaces by raising the temperature of the entire system (i.e. by baking). Typical baking conditions are 150-200 °C for... [Pg.9]

XPS has been used in almost every area in which the properties of surfaces are important. The most prominent areas can be deduced from conferences on surface analysis, especially from ECASIA, which is held every two years. These areas are adhesion, biomaterials, catalysis, ceramics and glasses, corrosion, environmental problems, magnetic materials, metals, micro- and optoelectronics, nanomaterials, polymers and composite materials, superconductors, thin films and coatings, and tribology and wear. The contributions to these conferences are also representative of actual surface-analytical problems and studies [2.33 a,b]. A few examples from the areas mentioned above are given below more comprehensive discussions of the applications of XPS are given elsewhere [1.1,1.3-1.9, 2.34—2.39]. [Pg.23]

Apart from the application of XPS in catalysis, the study of corrosion mechanisms and corrosion products is a major area of application. Special attention must be devoted to artifacts arising from X-ray irradiation. For example, reduction of metal oxides (e. g. CuO -> CU2O) can occur, loosely bound water or hydrates can be desorbed in the spectrometer vacuum, and hydroxides can decompose. Thorough investigations are supported by other surface-analytical and/or microscopic techniques, e.g. AFM, which is becoming increasingly important. [Pg.25]

After XPS, AES is the next most widely used surface-analytical technique. As an accepted surface technique AES actually predates XPS by two to three years, because the potential of XPS as a surface-specific technique was not recognized immediately by the surface-science community. Pioneering work was performed by Harris [2.125] and by Weber and Peria [2.126], but the technique as it is known today is basically the same as that established by Palmberg et al. [2.127]. [Pg.32]

Together with XPS and AES, SSIMS ranks as one of the principal surface analytical techniques. Because its sensitivity for elements greatly exceeds that of the other two techniques and much chemical information is available, its use is rapidly expanding in many fields of application. [Pg.86]

Vapor-phase decomposition and collection (Figs 4.16 to 4.18) is a standardized method of silicon wafer surface analysis [4.11]. The native oxide on wafer surfaces readily reacts with isothermally distilled HF vapor and forms small droplets on the hydrophobic wafer surface at room temperature [4.66]. These small droplets can be collected with a scanning droplet. The scanned, accumulated droplets finally contain all dissolved contamination in the scanning droplet. It must be dried on a concentrated spot (diameter approximately 150 pm) and measured against the blank droplet residue of the scanning solution [4.67-4.69]. VPD-TXRF has been carefully evaluated against standardized surface analytical methods. The user is advised to use reliable reference materials [4.70-4.72]. [Pg.192]

Ion beam spectrochemical analysis (IBSCA) is a sputtering-based surface analytical technique similar to SIMS/SNMS. In IBSCA the radiation emitted by excited sputtered secondary neutrals or ions is detected. IBSCA was developed parallel to SIMS in the nineteen-sixties and early nineteen-seventies [4.246, 4.247]. It is also known... [Pg.240]

In contrast to many other surface analytical techniques, like e. g. scanning electron microscopy, AFM does not require vacuum. Therefore, it can be operated under ambient conditions which enables direct observation of processes at solid-gas and solid-liquid interfaces. The latter can be accomplished by means of a liquid cell which is schematically shown in Fig. 5.6. The cell is formed by the sample at the bottom, a glass cover - holding the cantilever - at the top, and a silicone o-ring seal between. Studies with such a liquid cell can also be performed under potential control which opens up valuable opportunities for electrochemistry [5.11, 5.12]. Moreover, imaging under liquids opens up the possibility to protect sensitive surfaces by in-situ preparation and imaging under an inert fluid [5.13]. [Pg.280]

J. C. Riviere Surface Analytical Techniques, Oxford University Press, Oxford 1990. [Pg.303]

During the past twenty or so years numerous sophisticated surface analytical techniques have been successfully employed to investigate and understand the nature of bonding surfaces and their interaction with the environment. Some of these, e.g., HR-SEM and XPS have been mentioned above, with details of these and many more techniques covered in Chapter 6. In this section emphasis will be placed on those somewhat less sophisticated techniques that are employed in or in close conjunction with bond shops. What they lack in sophistication they often make up for in the ability to quickly and cheaply evaluate whether problems such as surface contamination or out-of-spec surface treatment procedures are... [Pg.994]

Its ability to distinguish among different elements and different chemical bonding configurations has made XPS the most popular surface analytical technique for providing structural, chemical bonding, and composition data... [Pg.519]

In many aqueous solutions nickel has the ability to become passive over a wide range of pH values. The mechanism of passivation of nickel and the properties of passive nickel have been studied extensively—perhaps more widely than for any other element, except possibly iron. In recent years the use of optical and surface analytical techniques has done much to clarify the situation . Early studies on the passivation of nickel were stimulated by the use of nickel anodes in alkaline batteries and in consequence were conducted in the main in alkaline media. More recently, however, attention has been directed to the passivation of nickel in acidic and neutral as well as alkaline solutions. [Pg.768]

Harrington, D. A. Ultrahigh-Vacuum Surface Analytical Methods in Electrochemical Studies of Single-Crystal Surfaces 28... [Pg.604]

D.A. Wesner, F.P. Coenen and H.P. Bonzel, Influence of potassium on carbon monoxide hydrogenation over iron A surface analytical study, Langmuir 1, 478-487 (1985). [Pg.89]

State-of-the-art TOF-SIMS instruments feature surface sensitivities well below one ppm of a mono layer, mass resolutions well above 10,000, mass accuracies in the ppm range, and lateral and depth resolutions below 100 nm and 1 nm, respectively. They can be applied to a wide variety of materials, all kinds of sample geometries, and to both conductors and insulators without requiring any sample preparation or pretreatment. TOF-SIMS combines high lateral and depth resolution with the extreme sensitivity and variety of information supplied by mass spectrometry (all elements, isotopes, molecules). This combination makes TOF-SIMS a unique technique for surface and thin film analysis, supplying information which is inaccessible by any other surface analytical technique, for example EDX, AES, or XPS. [Pg.33]


See other pages where Surface analytics is mentioned: [Pg.1703]    [Pg.2725]    [Pg.349]    [Pg.531]    [Pg.350]    [Pg.698]    [Pg.16]    [Pg.44]    [Pg.182]    [Pg.228]    [Pg.231]    [Pg.138]    [Pg.139]    [Pg.514]    [Pg.359]    [Pg.371]    [Pg.180]   
See also in sourсe #XX -- [ Pg.802 ]




SEARCH



Analyte surface-active

Analytic geometry surfaces

Analytic surface fitting

Analytical Determination of Surface Charge

Analytical Techniques for Characterising Filler Surfaces

Analytical potential energy surface

Analytical procedures solids and surfaces

Analytical techniques surface analysis methods

Analytical techniques, surface physicochemical

Cell surface analytes, detection

Composites surface analytical techniques

Ex situ surface analytical investigations

Fibres surface analytical techniques

In situ surface analytical methods

Metal surfaces analytical techniques

Other Surface Analytical Methods

Potential energy surface analytical form

Semiconductor problems, surface analytical techniques

Solid analytical geometry surfaces

Spectroscopic surface analytical techniques

Surface analytes

Surface analytical chemistry

Surface analytical chemistry, effect

Surface analytical method, ideal

Surface analytical methods

Surface analytical methods, comparative

Surface analytical methods, comparative considerations

Surface analytical methods, comparison

Surface analytical procedure

Surface analytical technique

Surface analytical technique requirements

Surface analytical techniques Auger electron spectroscopy

Surface analytical techniques Nuclear magnetic resonance

Surface analytical techniques Scanning electron microscopy

Surface analytical techniques spectroscopy

Surface analytical techniques structure EXAFS

Surface analytical techniques, examples

Surface and Thin Film Analytical Equipment Suppliers

Surface mass spectrometry, analytical method

Surface mass spectrometry, analytical method Applications

Surface physicochemical analytical

Surface waters analytical methods

Surface wear analytical tools

Surface-sensitive analytical

Surface-sensitive analytical methods

Traditional Approach Analytic Potential Energy Surfaces

Using electrochemical and surface analytical techniques to evaluate corrosion protection by rare earth metal (REM) compounds

© 2024 chempedia.info