Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface analysis electron spectroscopy

Surface Chemical Analysis. Electron spectroscopy of chemical analysis (ESCA) has been the most useful technique for the identification of chemical compounds present on the surface of a composite sample of atmospheric particles. The most prominent examples Include the determination of the surface chemical states of S and N in aerosols, and the investigation of the catalytic role of soot in heterogeneous reactions involving gaseous SO2, NO, or NH3 (15, 39-41). It is apparent from these and other studies that most aerosol sulfur is in the form of sulfate, while most nitrogen is present as the ammonium ion. A substantial quantity of amine nitrogen also has been observed using ESCA (15, 39, 41). [Pg.146]

Over the past 10 years a multitude of new techniques has been developed to permit characterization of catalyst surfaces on the atomic scale. Low-energy electron diffraction (LEED) can determine the atomic surface structure of the topmost layer of the clean catalyst or of the adsorbed intermediate (7). Auger electron spectroscopy (2) (AES) and other electron spectroscopy techniques (X-ray photoelectron, ultraviolet photoelectron, electron loss spectroscopies, etc.) can be used to determine the chemical composition of the surface with the sensitivity of 1% of a monolayer (approximately 1013 atoms/cm2). In addition to qualitative and quantitative chemical analysis of the surface layer, electron spectroscopy can also be utilized to determine the valency of surface atoms and the nature of the surface chemical bond. These are static techniques, but by using a suitable apparatus, which will be described later, one can monitor the atomic structure and composition during catalytic reactions at low pressures (< 10-4 Torr). As a result, we can determine reaction rates and product distributions in catalytic surface reactions as a function of surface structure and surface chemical composition. These relations permit the exploration of the mechanistic details of catalysis on the molecular level to optimize catalyst preparation and to build new catalyst systems by employing the knowledge gained. [Pg.3]

In this review the term X-ray photoelectron spectroscopy (XPS) will be used rather than the term adapted by Sieghahn, namely electron spectroscopy for chemical analysis (ESCA), to describe the surface sensitive electron spectroscopy under discussion. The fact that this symposium is taking place on the topic of industrial applications of surface analysis reflects the growth of the application of different areas of surface sciences in practical industrial and technological materials science areas. Initially, scientists working in XPS were concerned with establishing the fundamentals of the physics associated with the processes involved in the... [Pg.143]

It is evident from the above discussion that catalyst characterization is an activity important for scientific understanding, design, and troubleshooting of catalyzed processes. There is no universal recipe as to which characterization methods are more expedient than others. In the opinion of the writer, we will see continued good use of diffraction methods and electron microscopy, surface analysis, IR spectroscopy, and chemisorption methods, increased use of combined EM and ESCA analyses for determining the dopant dispersion, increased use of MAS-NMR and Raman spectroscopies for understanding of solid state chemistry of catalysts, and perhaps an increased use of methods that probe into the electronic structure of catalysts, including theory. [Pg.23]

The application of AFM and other techniques has been discussed in general terms by several workers [350-353]. Other complementary techniques covered in these papers include FT-IR spectroscopy, Raman spectroscopy, NMR spectroscopy, surface analysis by spectroscopy, GC-MS, scanning tunnelling microscopy, electron crystallography, X-ray studies using synchrotron radiation, neutron scattering techniques, mixed crystal infrared spectroscopy, SIMS, and XPS. Applications of atomic force spectroscopy to the characterisation of the following polymers have been reported polythiophene [354], nitrile rubbers [355], perfluoro copolymers of cyclic polyisocyanurates of hexamethylene diisocyanate and isophorone diisocyanate [356], perfluorosulfonate [357], vinyl polymers... [Pg.136]

Another important method for characterizing polymer surfaces involves electron spectroscopy for chemical analysis, ESCA, also known as X-ray photoelectron spectroscopy (XPS) see Table 12.3. This method is based on the observation that electrons are emitted by atoms under X-ray irradiation. The... [Pg.622]

Of all the techniques that have been developed to analyze surfaces. Auger electron spectroscopy has had the most widespread application. In the field of materials science, it has joined such analytical methods as X-ray diffraction and transmission electron microscopy as a staple of any well-equipped laboratory. It is used in chemistry and materials science to study the composition of solid surfaces and the chemical states of atoms and molecules on those surfaces. Chemists and physicists study the basic Auger transition to help learn about electronic processes in solids. Those interested in developing electronic equipment have been concerned with providing spectrometers with ever-decreasing incident beam diameters that will allow the chemical analysis of a surface on a microscopic scale. It is hoped that this article plus the... [Pg.63]

Madey and co-workers followed the reduction of titanium with XPS during the deposition of metal overlayers on TiOi [87]. This shows the reduction of surface TiOj molecules on adsorption of reactive metals. Film growth is readily monitored by the disappearance of the XPS signal from the underlying surface [88, 89]. This approach can be applied to polymer surfaces [90] and to determine the thickness of polymer layers on metals [91]. Because it is often used for chemical analysis, the method is sometimes referred to as electron spectroscopy for chemical analysis (ESCA). Since x-rays are very penetrating, a grazing incidence angle is often used to emphasize the contribution from the surface atoms. [Pg.308]

P. Echlin, ed., Analysis of Organic and Biological Surfaces, Wiley, New York, 1984. C. S. Fadley, in Electron Spectroscopy, Theory, Techniques, and Applications, Vol. 2, C. R. Brundle and A. D. Baker, eds., Pergamon, New York, 1978. [Pg.318]

Photoelectron spectroscopy provides a direct measure of the filled density of states of a solid. The kinetic energy distribution of the electrons that are emitted via the photoelectric effect when a sample is exposed to a monocluomatic ultraviolet (UV) or x-ray beam yields a photoelectron spectrum. Photoelectron spectroscopy not only provides the atomic composition, but also infonnation conceming the chemical enviromnent of the atoms in the near-surface region. Thus, it is probably the most popular and usefiil surface analysis teclmique. There are a number of fonus of photoelectron spectroscopy in conuuon use. [Pg.307]

X-ray photoelectron spectroscopy (XPS), also called electron spectroscopy for chemical analysis (ESCA), is described in section Bl.25,2.1. The most connnonly employed x-rays are the Mg Ka (1253.6 eV) and the A1 Ka (1486.6 eV) lines, which are produced from a standard x-ray tube. Peaks are seen in XPS spectra that correspond to the bound core-level electrons in the material. The intensity of each peak is proportional to the abundance of the emitting atoms in the near-surface region, while the precise binding energy of each peak depends on the chemical oxidation state and local enviromnent of the emitting atoms. The Perkin-Elmer XPS handbook contains sample spectra of each element and bindmg energies for certain compounds [58]. [Pg.308]

Other techniques in which incident photons excite the surface to produce detected electrons are also Hsted in Table 1. X-ray photoelectron Spectroscopy (xps), which is also known as electron spectroscopy for chemical analysis (esca), is based on the use of x-rays which stimulate atomic core level electron ejection for elemental composition information. Ultraviolet photoelectron spectroscopy (ups) is similar but uses ultraviolet photons instead of x-rays to probe atomic valence level electrons. Photons are used to stimulate desorption of ions in photon stimulated ion angular distribution (psd). Inverse photoemission (ip) occurs when electrons incident on a surface result in photon emission which is then detected. [Pg.269]

Analysis of Surface Elemental Composition. A very important class of surface analysis methods derives from the desire to understand what elements reside at the surface or in the near-surface region of a material. The most common techniques used for deterrnination of elemental composition are the electron spectroscopies in which electrons or x-rays are used to stimulate either electron or x-ray emission from the atoms in the surface (or near-surface region) of the sample. These electrons or x-rays are emitted with energies characteristic of the energy levels of the atoms from which they came, and therefore, contain elemental information about the surface. Only the most important electron spectroscopies will be discussed here, although an array of techniques based on either the excitation of surfaces with or the collection of electrons from the surface have been developed for the elucidation of specific information about surfaces and interfaces. [Pg.274]

One other very important attribute of photoemitted electrons is the dependence of their kinetic energy on chemical environment of the atom from which they originate. This feature of the photoemission process is called the chemical shift of and is the basis for chemical information about the sample. In fact, this feature of the xps experiment, first observed by Siegbahn in 1958 for a copper oxide ovedayer on a copper surface, led to his original nomenclature for this technique of electron spectroscopy for chemical analysis or esca. [Pg.277]

For a review of how defects manifest themselves in a LEED experiment, see M. Henzler. In Electron Spectroscopy for Surface Analysis. (H. I. Ibach, ed.) Springer, Berlin, 1977. [Pg.277]

Auger electron spectroscopy (AES) is a technique used to identify the elemental composition, and in many cases, the chemical bonding of the atoms in the surface region of solid samples. It can be combined with ion-beam sputtering to remove material from the surface and to continue to monitor the composition and chemistry of the remaining surface as this surface moves into the sample. It uses an electron beam as a probe of the sample surface and its output is the energy distribution of the secondary electrons released by the probe beam from the sample, although only the Ai er electron component of the secondaries is used in the analysis. [Pg.310]

Auger electron spectroscopy is the most frequently used surface, thin-film, or interface compositional analysis technique. This is because of its very versatile combination of attributes. It has surface specificity—a sampling depth that varies... [Pg.310]

PIXE detection limits for surface layers on bulk specimens are sufficiendy low to permit calibradon of true surfe.ce analysis techniques (e.g., Auger electron spectroscopy). [Pg.368]


See other pages where Surface analysis electron spectroscopy is mentioned: [Pg.1307]    [Pg.1307]    [Pg.820]    [Pg.1307]    [Pg.1307]    [Pg.820]    [Pg.76]    [Pg.197]    [Pg.307]    [Pg.222]    [Pg.5381]    [Pg.1558]    [Pg.81]    [Pg.393]    [Pg.304]    [Pg.306]    [Pg.1807]    [Pg.1828]    [Pg.2725]    [Pg.2938]    [Pg.269]    [Pg.277]    [Pg.356]    [Pg.41]    [Pg.50]    [Pg.86]    [Pg.451]    [Pg.22]    [Pg.23]    [Pg.24]    [Pg.117]    [Pg.298]    [Pg.363]    [Pg.418]    [Pg.442]   


SEARCH



Analysis spectroscopy

Auger electron spectroscopy-SIMS surface analysis

Electron Spectroscopy for Surface Analysis

Electron analysis

Electron surface analysis

Electronic spectroscopy, surface

Electronic spectroscopy, surface analysis

Electronic spectroscopy, surface analysis

Surface analysis

Surface analysis Auger electron spectroscopy

Surface analysis spectroscopy

Surface compositional analysis. Auger electron spectroscopy (AES)

Surface electronic

Surface electrons

Surface spectroscopy

© 2024 chempedia.info