Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbine mass flow

Thus there are three modifications to the a/s efficiency analysis, involving (i) the specific heats ( and n ), (ii) the fuel-air ratio / and the increased turbine mass flow (I +/), and (iii) the pressure loss term S. The second of these is small for most gas turbines which have large air-fuel ratios and / is of the order of l/IOO. The third, which can be significant, can also be allowed for a modification of the a/s turbine efficiency, as given in Hawthorne and Davis [I]. (However, this is not very convenient as the isentropic efficiency tjt then varies with r and jc, leading to substantial modifications of the Hawthome-Davis chart.)... [Pg.42]

Turbine mass flow rate, outlet T, shaft power ... [Pg.258]

Assessments of control, operabiHty and part load performance of MHD—steam plants are discussed elsewhere (rl44 and rl45). Analyses have shown that relatively high plant efficiency can be maintained at part load, by reduction of fuel input, mass flow, and MHD combustor pressure. In order to achieve efficient part load operation the steam temperature to the turbine must be maintained. This is accompHshed by the use of flue gas recirculation in the heat recovery furnace at load conditions less than about 75% of fiiU load. [Pg.435]

The expansion turbine converts the dynamic energy of the flue gas into mechanical energy. The recoverable energy is determined by the pressure drop through the expander, the expander inlet temperature, and the mass flow of gas (66). This power is then typically used to drive the regenerator air blower. [Pg.219]

There are two ways of presenting steam balance data, schematically or tabulady. For both presentation types, a balance is made at each pressure level. In a schematic balance, such as that shown in Figure 9, horizontal lines are drawn for each pressure. The steam-using equipment is shown between the lines, and individual flows are shown vertically. Table 3 contains the same data as shown in Figure 9. In both cases the steam balance has been simplified to show only mass flows. A separate balance should be developed that identifies energy flows, including heat losses and power extraction from the turbines. [Pg.226]

Velocity meters with density compensation. The signal from the velocity meter (e.g., turbine meter, electromagnetic meter, or sonic velocity meter) is multiplied by the signal from a densitometer to give a signal proportional to the mass flow rate. [Pg.897]

Coal is fed as a paste containing 25 wt % water, and sorbent is fed diy by a lock-hopper system with pneumatic conveying. The top size of each feedstock is 3 mm in). The latent heat lost evaporating the water fed with the paste is compensated by increased gas turbine power output resulting from the increased flue-gas mass flow rate. For the 80-MWe unit, there are six coal feed points (one per 4.5 m" [48 ft"]) and four sorbent feed points (one per 6.7 m" [72 ft"]), all entering beneath the tube bank along one wall. The bed depth is... [Pg.2400]

The Steam Injection Cycle Steam injection has been used in reciprocating engines and gas turbines for a number of years. This cycle may be an answer to the present concern with pollution and higher efficiency. Corrosion problems are the major hurdle in such a system. The concept is simple and straightforward Steam is injected into the compressor discharge air and increases the mass flow rate... [Pg.2514]

Understanding the design characteristics of the dual or triple pressure HRSG and its corresponding steam turbine sections (HP, IP, and LP turbines) is important. Increasing pressure of any section will increase the work output of the section for the same mass flow. However, at higher... [Pg.92]

The work required to drive the turbine eompressor is reduced by lowering the compressor inlet temperature thus increasing the output work of the turbine. Figure 2-35 is a schematic of the evaporative gas turbine and its effect on the Brayton cycle. The volumetric flow of most turbines is constant and therefore by increasing the mass flow, power increases in an inverse proportion to the temperature of the inlet air. The psychometric chart shown shows that the cooling is limited especially in high humid conditions. It is a very low cost option and can be installed very easily. This technique does not however increase the efficiency of the turbine. The turbine inlet temperature is lowered by about 18 °F (10 °C), if the outside temperature is around 90 °F (32 °C). The cost of an evaporative cooling system runs around 50/kw. [Pg.97]

VFO works well in gas turbines. In a nine-month test program, the combustion properties of VFO were studied in a combustion test module. A gas turbine was also operated on VFO. The tests were conducted to study the combustion characteristics of VFO, the erosive and corrosive effects of VFO, and the operation of a gas turbine on VFO. The combustion tests were conducted on a combustion test module built from a GE Frame 5 combustion can and liner. The gas turbine tests were conducted on a Ford model 707 industrial gas turbine. Both the combustion module and gas turbine were used in the erosion and corrosion evaluation. The combustion tests showed the VFO to match natural gas in flame patterns, temperature profile, and flame color. The operation of the gas turbine revealed that the gas turbine not only operated well on VFO, but its performance was improved. The turbine inlet temperature was lower at a given output with VFO than with either natural gas or diesel fuel. This phenomenon is due to the increase in exhaust mass flow provided by the addition of steam in the diesel for the vaporization process. Following the tests, a thorough inspection was made of materials in the combustion module and on the gas turbine, which came into contact with the vaporized fuel or with the combustion gas. The inspection revealed no harmful effects on any of the components due to the use of VFO. [Pg.451]

The gas turbine eontrol loop eontrols the Inlet Guide Vanes (IGV) and the Gas Turbine Inlet Temperature (TIT). The TIT is defined as the temperature at the inlet of the first stage turbine nozzle. Presently, in 99% of the units, the inlet temperature is eontrolled by an algorithm, whieh relates the turbine exhaust temperature, or the turbine temperature after the gasifier turbine, the eompressor pressure ratio, the eompressor exit temperature, and the air mass flow to the turbine inlet temperature. New teehnologies are being developed to measure the TIT direetly by the use of pyrometers and other speeialized probes, whieh eould last in these harsh environments. The TIT is eontrolled by the fuel flow and the IGV, whieh eontrols the total air mass... [Pg.639]

The gas turbine efficiency drops off quickly at part load as would be expected, as the gas turbine is very dependent on turbine firing temperature and mass flow of the incoming air. The gas turbine heat rate increases rapidly at part load conditions. [Pg.707]

A reversible cycle with turbine expansion split into two steps (high pressure, HP, and low pressure, LP) is illustrated in the T, s diagram of Fig. 4.3. The mass flow through the heater is still unity and the temperature rises from T2 to Tt, = Tq hence the heat supplied (3b is unchanged, as is the overall isentropic temperature ratio (x). But cooling air of mass flow i//H is used at entry to the first HP turbine (of isentropic temperature ratio. xh) and additional cooling of mass flow is introduced subsequently into the LP turbine (of isentropic temperature ratio Xl)- The total cooling flow is then i/( = i/ h + >h.-... [Pg.51]

But this expansion through the LP turbine may be considered as two parallel expansions. The first is of mass flow (1 + from the temperature Tg to a temperature Tg (a continuation of the expansion of (1 + i/(h) from 5 to 9) and the second is of mass flow i/(l through a reversed compressor from state 7 to state 1 (which cancels out the... [Pg.51]

For two step cooling, now with irreversible compression and expansion, Fig. 4.7 shows that the turbine entry temperature is reduced from Ti. to by mixing with the cooling air i/ H taken from the compressor exit, at state 2, pressure p2, temperature T2 (Fig. 4.7a). After expansion to temperature Tg, the turbine gas flow (1 + lp ) is mixed with compressor air at state 7 (mass flow i/h.) at temperature Tg. This gas is then expanded to temperature T g. [Pg.58]

In the second development, the emphasis is on taking advantage of the increa.sed specific work associated with evaporative intercooling and of the increased mass flow and work output of the turbine. Any gain on the dry efficiency is likely to be marginal, depending on the split in pressure ratio. [Pg.103]

For a mass flow of air (Mg) to the compressor of the gas turbine plant, a mass flow Mf of fuel (of specific enthalpy hfo) is supplied to the two combustion chambers (Mf = (Mf)ff + (Mf)f). The overall efficiency of the combined plant is then... [Pg.117]

Turbochargers use the expansion of exhaust gas to pump combustion air to an engine. Exhaust gas is directed through a set of nozzles to drive a turbine wheel. Directly connected to the exhaust turbine is an air compressor turbine that delivers combustion air to the power cylinders. Thus, back-pressure is put on the engine exhaust, reducing power slightly, but the net effect of the increase in air mass flow available for combustion i.s to increase horsepower. [Pg.475]

Flow Rate. The values for volumetric or mass flow rate measurement are often determined by measuring pressure difference across an orifice, nozzle, or venturi tube. Other flow measurement techniques include positive displacement meters, turbine flowmeters, and airflow-measuring hoods. [Pg.301]

For an open. sysiem at steady state, as in the case of turbines, compressors, pumps, etc.. Equation 2-109 can be written (for unit mass flow rate) as... [Pg.212]

Figure 23.10a illustrates the relationship between turbine efficiency and mass flow through the turbine. Because hMECH his, the major contribution to the nonlinear trend of the overall efficiency with part-load is from the isentropic efficiency his A turbine model needs to capture this behavior. It should also be noted that there will be an efficiency associated with an electricity generating set coupled to the steam turbine (typically 95 to 98%). [Pg.473]

The relationship between shaft power and mass flow through a heat engine is sometimes called the Willans Line. A typical Willans Line for a steam turbine is illustrated in Figure 23.10b. For many machines this is almost a straight line. [Pg.473]

MW power. Assuming the power output is proportional to the mass flow through the turbine, estimate the power output with NOx abatement. [Pg.579]

Agitator Turbine, 3.6 HP, 1750 rpm, XP rated motor, variable speed drive Circulating pump Viking series HL124, 2 HP, 1745 rpm, XP rated motor Micro Motion mass flow meter stainless steel 316L, 0-80 lb/min mass flow range, accuracy of 0.4% of range, XP rated with electronics unit mounted separately in nonhazardous area. [Pg.583]

Gas Turbine Combustors GT combustor design has been altered to handle low BTU gas with high mass flow due to problems encountered in gas turbines. [Pg.85]

Lean burn/dry low-NOx combustors can generate NOx emissions levels as low as 9 ppm (at 15% 02), while those with liquid fuel combustors have NOx emissions limited to approximately 25 ppm (at 15% 02). There is no substantial difference in general performance with either fuel. However, the different heats of combustion result in slightly higher mass flows through the expansion turbine when liquid fuels are used, and thus a very small increase in power and efficiency performance is obtained. Also, the fuel pump work with liquid fuel is less than with the fuel gas booster compressor, thereby further increasing net performance with liquid fuels. [Pg.287]


See other pages where Turbine mass flow is mentioned: [Pg.70]    [Pg.70]    [Pg.15]    [Pg.15]    [Pg.525]    [Pg.897]    [Pg.2371]    [Pg.2389]    [Pg.211]    [Pg.78]    [Pg.92]    [Pg.93]    [Pg.119]    [Pg.137]    [Pg.439]    [Pg.715]    [Pg.717]    [Pg.188]    [Pg.154]    [Pg.479]    [Pg.1177]    [Pg.186]    [Pg.492]    [Pg.22]    [Pg.121]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



© 2024 chempedia.info