Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Balance steaming

NOTE All boiler plant operators are urged to meter the MU water consumption as an aid to calculating a material balance. Steam generation rates can be reasonably accurately determined from the fuel consumption because records of fuel costs are always maintained. Daily and weekly BD rates usually can be estimated from the use of a measuring bucket or pipe velocity table. The difference between steam production and MU represents a combination ofBD and loss of CR. [Pg.181]

High Efficiency Reformer Design. Maximum feedstock and combustion air preheat is used to balance steam generation with steam requirements. [Pg.145]

Steam economy with a fixed feed arrangement can be calculated from heat and material balances. Steam economies lower than those calculated during the design ofthe unit may be the result of one or more of the following ... [Pg.531]

While Figure 18.3 provides an overview of the balanced steam flows. Table 18.4 gives a breakdown steam for four process areas as cost centers A, B, C, and D. Some of the steam usages have no condensate return and these users include stripping... [Pg.394]

Temperature Drop in Throttling Valve and Energy Balance. Steam is flowing... [Pg.107]

Figure 6.33 shows a steam turbine integrated with the process above the pinch. Heat Qhp is taken into the process from high-pressure steam. The balance of the hot utility demand Qlp is taken... [Pg.195]

Solution First, we must construct the balanced composite curves using the complete set of data from Table 7.1. Figure 7.5 shows the balanced composite curves. Note that the steam has been incorporated within the construction of the hot composite curve to maintain the monotonic nature of composite curves. The same is true of the cooling water in the cold composite curve. Figure 7.5 also shows the curves divided into enthalpy intervals where there is either a... [Pg.220]

If air (or oxygen) and steam are both passed through a high-temperature bed of coal or coke these reactions can be balanced, thus controlling the bed temperature and the fusion of the ash. In the higher pressure Lurgi process the gas obtained is high in methane, formed in reactions such as... [Pg.187]

How it was declared, the new steam drums cannot undergo a hydrotest, because they loose their roundness and balance due to the additional weight of the water, even if the cylindrical part will be supported. [Pg.33]

It was pointed out, that the periodical inspection of the steam drums has been become an absolute must especially under the circumstance, that the economical pressure results in smaller wall thickness, higher steam pressure and higher rotation speed. The conventional periodical inspection (hydrotest and visual inside inspection) is on one hand time consuming and therefore expensive and on the other hand the results of the hydrotest are doubtful and can result in a seriously damage of the roundness and balance of the steam drum. [Pg.34]

The steam generator is a balanced draft, controlled circulation, multichamber unit which incorporates NO control and final burnout of the fuel-rich MHD combustion gases. The MHD generator exhaust is cooled in a primary radiant chamber from about 2310 to 1860 K in two seconds, and secondary air for afterburning and final oxidation of the gas is introduced in the secondary chamber where seed also condenses. Subsequent to afterburning and after the gas has been cooled down sufftciendy to soHdify condensed seed in the gas, the gas passes through the remaining convective sections of the heat recovery system. [Pg.425]

Additional operations essential to commercial bauxite processing are steam and power generation, heat recovery to minimise energy consumption, process liquor evaporation to maintain a water balance, impurity removal from process liquor streams, classification and washing of ttihydrate, lime caustication of sodium carbonate [497-19-8] to sodium hydroxide [1310-73-2] repair and maintenance of equipment, rehabiUtation of mine and residue disposal sites, and quaUty and process control. Each operation in the process can be carried out in a variety of ways depending upon bauxite properties and optimum economic tradeoffs. [Pg.134]

Minimising energy consumption per ton of alurnina while maintaining a steam-power balance is an industry-wide, ongoing effort. Reduction of steam consumption has been limited by the cost of purchased power to compensate for loss of power generation. [Pg.135]

Stea.dy-Sta.teFeedforwa.rd, The simplest form of feedforward (FF) control utilizes a steady-state energy or mass balance to determine the appropriate manipulated variable adjustment. This form of feedforward control does not account for the process dynamics of the disturbance or manipulated variables on the controlled variable. Consider the steam heater shown ia Figure 15. If a steady-state feedforward control is designed to compensate for feed rate disturbances, then a steady-state energy balance around the heater yields ... [Pg.71]

The energy balance should analyse the energy flows by type and amount, ie, present summaries of electricity, fuel gas, steam level, heat rejected to cooling water, etc. It should include reaUstic loss values for turbine inefficiencies and heat losses through insulation. [Pg.83]

Checking Against Optimum Design. This attempts to answer the question whether a balance needs to be as it is. The first thing to compare against is the best current practice. Information is available ia the Hterature (13) for large-volume chemicals such as NH, CH OH, urea, and ethylene. The second step is to look for obvious violations of good practice on iadividual pieces of equipment. Examples of violations are stack temperatures > 150° C process streams > 120° C, cooled by air or water process streams > 65° C, heated by steam t/ urbine 65% reflux ratio > 1.15 times minimum and excess air > 10% on clean fuels. [Pg.94]

Worldwide propylene production and capacity utilization for 1992 are given in Table 6 (74). The world capacity to produce propylene reached 41.5 X 10 t in 1992 the demand for propylene amounted to 32.3 x 10 t. About 80% of propylene produced worldwide was derived from steam crackers the balance came from refinery operations and propylene dehydrogenation. The manufacture of polypropylene, a thermoplastic resin, accounted for about 45% of the total demand. Demand for other uses included manufacture of acrylonitrile (qv), oxochemicals, propylene oxide (qv), cumene (qv), isopropyl alcohol (see Propyl alcohols), and polygas chemicals. Each of these markets accounted for about 5—15% of the propylene demand in 1992 (Table 7). [Pg.127]

This reaction can also be mn in a continuous fashion. In the initial reactor, agitation is needed until the carbon disulfide Hquid phase reacts fully. The solution can then be vented to a tower where ammonia and hydrogen sulfide are stripped countercurrendy by a flow of steam from boiling ammonium thiocyanate solution. Ammonium sulfide solution is made as a by-product. The stripped ammonium thiocyanate solution is normally boiled to a strength of 55—60 wt %, and much of it is sold at this concentration. The balance is concentrated and cooled to produce crystals, which are removed by centrifiigation. [Pg.152]

A further enhancement to the HRS process whereby the exhaust from a gas fired turbine is used to superheat steam from the HRS process is also possible (129). The superheated steam is then fed through a turbogenerator to produce additional electricity. This increases the efficiency of heat recovery of the turbine exhaust gas. With this arrangement, electric power generation of over 13.6 kW for 1 t/d (15 kW/STPD) is possible. Good general discussions on the sources of heat and the energy balance within a sulfuric acid plant are available (130,131). [Pg.189]

The steam balance in the plant shown in Figure 2 enables all pumps and blowers to be turbine-driven by high pressure steam from the boiler. The low pressure exhaust system is used in the reboiler of the recovery system and the condensate returns to the boiler. Although there is generally some excess power capacity in the high pressure steam for driving other equipment, eg, compressors in the carbon dioxide Hquefaction plant, all the steam produced by the boiler is condensed in the recovery system. This provides a weU-balanced plant ia which few external utiUties are required and combustion conditions can be controlled to maintain efficient operation. [Pg.21]

Overall comparison between amine and carbonate at elevated pressures shows that the amine usually removes carbon dioxide to a lower concentration at a lower capital cost but requires more maintenance and heat. The impact of the higher heat requirement depends on the individual situation. In many appHcations, heat used for regeneration is from low temperature process gas, suitable only for boiler feed water heating or low pressure steam generation, and it may not be usefiil in the overall plant heat balance. [Pg.22]

The gasifier for the 250 MW IGCC project in The Netherlands, scheduled to begin operation in 1993, is a 55 MW gas turbine with the balance of the power from a steam turbine. An AustraHan coal is to be used, and sulfur removal is expected to be 98.5% (95). [Pg.235]

Mihtary interest in the development of fuel and thermal resistant elastomers for low temperature service created a need for fluorinated elastomers. In the early 1950s, the M. W. Kellogg Co. in a joint project with the U.S. Army Quartermaster Corps, and 3M in a joint project with the U.S. Air Force, developed two commercial fluorocarbon elastomers. The copolymers of vinyUdene fluoride, CF2=CH2, and chlorotrifluoroethylene, CF2=CFC1, became available from Kellogg in 1955 under the trademark of Kel-F (1-3) (see Fluorine compounds, ORGANic-POLYcm.OROTRiFLUOROETHYLENE Poly(vinylidene) fluoride). In 1956, 3M introduced a polymer based on poly(l,l-dihydroperfluorobutyl acrylate) trademarked 3M Brand Fluorombber 1F4 (4). The poor balance of acid, steam, and heat resistance of the latter elastomer limited its commercial use. [Pg.508]

Stea.m Ba.la.nces. The steam balance is usually the most important plant-wide energy balance. It shows each service requirement, including the use of steam as a working fluid to develop power. [Pg.226]


See other pages where Balance steaming is mentioned: [Pg.358]    [Pg.164]    [Pg.358]    [Pg.164]    [Pg.36]    [Pg.307]    [Pg.459]    [Pg.34]    [Pg.41]    [Pg.320]    [Pg.88]    [Pg.135]    [Pg.135]    [Pg.83]    [Pg.90]    [Pg.94]    [Pg.94]    [Pg.263]    [Pg.271]    [Pg.368]    [Pg.21]    [Pg.381]    [Pg.234]    [Pg.274]    [Pg.274]    [Pg.529]    [Pg.266]    [Pg.226]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Steam balance

© 2024 chempedia.info