Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonate characteristics

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

Some amorphous copoly(ether—sulfone) fkms have been prepared (117) with Ts around 130°C with no loss in weight up to 400°C in ak or N2. Other backbones iavestigated in this class of polymers are copoly(ether—amides) (118) and copoly(ether—ketones) (119). These polymers show good mechanical properties, flow characteristics, and abrasion resistance. [Pg.539]

Naphthalenediol. This diol is prepared by the alkah fusion of 2-hydroxynaphthalene-6-sulfonic acid (Schaffer acid) at 290—295°C. Schaffer acid is usually produced by sulfonation of 2-naphthol with the addition of sodium sulfate at 85—105°C. This acid is also used as a coupling component in the production of a2o dyes such as Acid Black 26. 2,6-Naphthalenediol is used as a component in the manufacture of aromatic polyesters which, as is also tme of the corresponding amides, display Hquid crystal characteristics (52). [Pg.500]

Thermal stabihty of the foaming agent in the presence of high temperature steam is essential. Alkylaromatic sulfonates possess superior chemical stabihty at elevated temperatures (205,206). However, alpha-olefin sulfonates have sufficient chemical stabihty to justify their use at steam temperatures characteristic of most U.S. steamflood operations. Decomposition is a desulfonation process which is first order in both surfactant and acid concentrations (206). Because acid is generated in the decomposition, the process is autocatalytic. However, reservoir rock has a substantial buffering effect. [Pg.193]

Sulfonation has been used to change some characteristics of blends. Poly(2,6-diphenyl-l,4-phenylene oxide) and polystyrene are immiscible. However, when the polymers were functionalized by sulfonation, even though they remained immiscible when blended, the functionalization increased interfacial interactions and resulted in improved properties (65). In the case of DMPPO and poly(ethyl acrylate) the originally immiscible blends showed increased miscibility with sulfonation (66). [Pg.330]

Polymerization Solvent. Sulfolane can be used alone or in combination with a cosolvent as a polymerization solvent for polyureas, polysulfones, polysUoxanes, polyether polyols, polybenzimidazoles, polyphenylene ethers, poly(l,4-benzamide) (poly(imino-l,4-phenylenecarbonyl)), sUylated poly(amides), poly(arylene ether ketones), polythioamides, and poly(vinylnaphthalene/fumaronitrile) initiated by laser (134—144). Advantages of using sulfolane as a polymerization solvent include increased polymerization rate, ease of polymer purification, better solubilizing characteristics, and improved thermal stabUity. The increased polymerization rate has been attributed not only to an increase in the reaction temperature because of the higher boiling point of sulfolane, but also to a decrease in the activation energy of polymerization as a result of the contribution from the sulfonic group of the solvent. [Pg.70]

Sulfation is defined as any process of introducing an SO group into an organic compound to produce the characteristic C—OSO configuration. Typically, sulfation of alcohols utilizes chlorosulfuric acid or sulfur trioxide reagents. Unlike the sulfonates, which show remarkable stability even after prolonged heat, sulfated products are unstable toward acid hydrolysis. Hence, alcohol sulfuric esters are immediately neutralized after sulfation in order to preserve a high sulfation yield. [Pg.74]

Petroleum sulfonates have traditionally been produced by both batch and continuous treatment of petroleum oils with oleum. These processes have been covered in several reviews (138,139). Natural petroleum sulfonates are coproducts in the manufacture of a variety of refined oils, most notably white (mineral) oils, lube oils, and process oils (plasticizer oils for mbber compounding). The feedstocks are selected primarily on the basis of the desired characteristics of the refined oils which generally contain 15—30% aromatics. [Pg.80]

Summary of Characteristics of Falling Film Continuous SOj Sulfonation Processes. Both concentric and multitubular reactor systems suppHed by competing manufacturers have surprisingly similar operating characteristics organic feedstock loading of ca 0.4 kg/(h-mm) (circumference) for LAB, and ca 0.3 kg/(h-mm) for alcohol ethoxylates an SO concentration of 3.3—5.0 vol % SO for LAB sulfonation, and 2—3% SO ... [Pg.87]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

Insoluble sulfonated pigments are made from colorants that contain a sulfonic acid group that is easily converted into an insoluble metal salt. In most cases, the sulfonic acid group is ortho to the diazo further reducing the solubilizing characteristics of the sulfonic grouping. The shade of these products is affected by the metal incorporated into the molecule and the physical characteristics of the colorants. D C Red Nos. 7 (19b) and 34 (26) are insoluble sulfonated pigments. [Pg.443]

The solubihty characteristics of sodium acyl isethionates allow them to be used in synthetic detergent (syndet) bars. Complex blends of an isethionate and various soaps, free fatty acids, and small amounts of other surfactants reportedly are essentially nonirritant skin cleansers (66). As a rule, the more detersive surfactants, for example alkyl sulfates, a-olefin sulfonates, and alkylaryl sulfonates, are used in limited amounts in skin cleansers. Most skin cleansers are compounded to leave an emollient residue on the skin after rinsing with water. Free fatty acids, alkyl betaines, and some compatible cationic or quaternary compounds have been found to be especially useful. A mildly acidic environment on the skin helps control the growth of resident microbial species. Detergent-based skin cleansers can be formulated with abrasives to remove scaly or hard-to-remove materials from the skin. [Pg.299]

Acid Dyes. These water-soluble anionic dyes ate appHed to nylon, wool, sUk, and modified acryHcs. They ate also used to some extent for paper, leather, food, and cosmetics. The original members of this class aU had one or mote sulfonic or catboxyHc acid groups in thein molecules. This characteristic probably gave the class its name. Chemically, the acid dyes consist of azo (including preformed metal complexes), anthraquiaone, and ttiaryHnethane compounds with a few azHie, xanthene, ketone imine, nitro, nitroso, and quHiophthalone compounds. [Pg.271]

Acid—mordant dyes have characteristics similar to those of acid dyes which have a relatively low molecular weight, anionic substituents, and an affinity to polyamide fibers and mordant dyes. In general, brilliant shades caimot be obtained by acid—mordant dyes because they are used as their chromium mordant by treatment with dichromate in the course of the dyeing procedure. However, because of their excellent fastness for light and wet treatment, they are predominandy used to dye wool in heavy shades (navy blue, brown, and black). In terms of chemical constitution, most of the acid—mordant dyes are azo dyes some are triphenyhnethane dyes and very few anthraquinone dyes are used in this area. Cl Mordant Black 13 [1324-21 -6] (183) (Cl 63615) is one of the few examples of currentiy produced anthraquinone acid—mordant dyes. It is prepared by condensation of purpurin with aniline in the presence of boric acid, followed by sulfonation and finally by conversion to the sodium salt (146,147). [Pg.336]

In the present work it was studied the dependence of analytical characteristics of the composite SG - polyelectrolyte films obtained by sol-gel technique on the content of non-ionic surfactant in initial sol. Triton X-100 and Tween 20 were examined as surfactants polystyrene sulfonate (PSS), polyvinyl-sulfonic acid (PVSA) or polydimethyl-ammonium chloride (PDMDA) were used as polyelectrolytes. The final films were applied as modificators of glass slides and pyrolytic graphite (PG) electrode surfaces. [Pg.306]

The flask is then heated in an oil bath maintained at a temperature of 190-210° and the mixture subjected to steam distillation. The sulfonate groups are hydrolyzed in this process and the bromophenol passes over as a heavy, colorless or pale yellow oil. In about one hour the distillate is clear. The product is extracted with ether, the ether is removed by distillation from the steam bath, and the residue is distilled at atmospheric pressure (Note 3). The fraction boiling at 194-200° represents practically pure o-bromophenol. The yield is 70-75 g. (40-44 per cent of the theoretical amount) (Note 4). t -Bromophenol is a colorless liquid with a very characteristic odor. It is rather unstable and decomposes on standing, becoming brown or red in color. [Pg.15]

Fonnation of allylic products is characteristic of solvolytic reactions of other cyclopropyl halides and sulfonates. Similarly, diazotization of cyclopropylamine in aqueous solution gives allyl alcohol. The ring opening of a cyclopropyl cation is an electrocyclic process of the 4 + 2 type, where n equals zero. It should therefore be a disrotatory process. There is another facet to the stereochemistry in substituted cyclopropyl systems. Note that for a cri-2,3-dimethylcyclopropyl cation, for example, two different disrotatory modes are possible, leading to conformationally distinct allyl cations ... [Pg.617]

Only limited IR spectroscopic data for (benzo)thiepins have been reported. The C —C double bond stretching frequency in 2,7-di-rm-butyl-4,5-dimethylthiepin is observed at 1620 cm-1 with weak intensity.13 Characteristic strong intensities are found for the S —O vibrations in sulfoxide (e.g., 1040 cm-1 for 5-methoxy-4-phenyl-l-benzothiepin-3(2//)-one 1-oxide14) and sulfone (e.g., 1120 and 1300 cm-1 for thiepin 1,1-dioxide15) derivatives. [Pg.67]

During the first trials with synthetic separators around 1940 it had already been observed that some of the desired battery characteristics were affected detrimentally. The cold crank performance decreased and there was a tendency towards increased sulfation and thus shorter battery life. In extended test series, these effects could be traced back to the complete lack of wooden lignin, which had leached from the wooden veneer and interacted with the crystallization process at the negative electrode. By a dedicated addition of lignin sulfonates — so called organic expanders -— to the negative mass, not only were these disadvantages removed, but an improvement in performance was even achieved. [Pg.252]

In the sol-gel procedure for the preparation of hybrids, polymeric acid catalysts such as poly (styrene sulfonic acid) were also used instead of hydrogen chloride [14]. The polymeric acid catalyst was effective for the preparation of hybrids at a similar level to that of hydrogen chloride catalyst. In some cases, the increased modulus was observed due to the higher extent of reaction. No difference was observed in morphologies between the hybrids prepared with polymeric and small molecule acid catalysts. The method using polymeric acid catalyst may depress the ion-conductive property, characteristic to the mobile acidic small molecules. Polymeric catalyst may also influence the rheology of the resulting hybrids. [Pg.15]

In this review, structural information on sulfoxides and sulfones is presented with emphasis on recent results and on structural variations. It is our intention that the discussion reflect the characteristic patterns of this area rather than provide an encyclopedic coverage. However, for the simplest, most fundamental, substances we are aiming at complete coverage as well. [Pg.35]

Several theoretical and experimental characteristics of the sulfone and sulfoxide groups are substantially modified when these are incorporated within a cyclic array. As a rule, the smaller the ring size the larger the deviation from the normal expected properties and behavior of the sulfone and sulfoxide groups. [Pg.381]

In view of the fact that the chemistry of ring compounds has played a considerable role in the development of modern organic chemistry, the following question is definitely relevant Do cyclic sulfones and sulfoxides envisioned as a particular distinct category within this class of compounds contribute uniquely—in their own right—to the understanding of the characteristics and chemistry of the sulfone and sulfoxide functionalities and their role in organic chemistry ... [Pg.381]

The first substituted thiirene dioxides21 and thiirene oxides22 (e.g. 4 x = 2 and x = 1, respectively) were synthesized and characterized by Carpino and coworkers, while the parent thiirene oxide and dioxide are not known to date. However, the successful syntheses of the substituted unsaturated systems 4 opened the door to an extensive research involving the theoretical and experimental aspects of this class of intriguing compounds2, particularly as far as the unique role and characteristics of their sulfone and sulfoxide groups are concerned. [Pg.384]

A unique characteristic feature of the cyclic three-membered ring sulfones and sulfoxides is the dramatic increase in the length of the carbon-carbon single bonds and the carbon-carbon double bonds in the series of thiirane-thiirane oxide-thiirane dioxide (20a -> 16a -> 17a), and thiirene-thiirene oxide-thiirene dioxide (21 -> 18a -> 19b). [Pg.387]

The question arises whether there are any unique characteristics associated with the acidity of a-hydrogens when the sulfone or the sulfoxide group is incorporated within a three-membered ring system. [Pg.402]

Both the sulfone and the sulfoxide groups are characteristically electrophilic based on the increasing electropositivity of the sulfur atom in proportion to its oxidation state. Therefore, the nucleophilicity of these groups can be discussed only in terms of the nucleophilicity of either the trivalent sulfur atom, still having a pair of nonbonding electrons, or the oxygen atom in the sulfoxides. [Pg.407]


See other pages where Sulfonate characteristics is mentioned: [Pg.4]    [Pg.118]    [Pg.578]    [Pg.180]    [Pg.25]    [Pg.460]    [Pg.463]    [Pg.10]    [Pg.155]    [Pg.86]    [Pg.87]    [Pg.95]    [Pg.99]    [Pg.99]    [Pg.21]    [Pg.351]    [Pg.2210]    [Pg.385]    [Pg.395]    [Pg.79]    [Pg.382]    [Pg.390]    [Pg.393]    [Pg.394]   
See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Flotation Characteristics of Alkyl Sulfonates and Sulfates

Sulfonate performance characteristics

© 2024 chempedia.info