Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophile characteristics

Nickel(O) complexes are extremely effective for the dimerization and oligomerization of conjugated dienes [8,9]. Two molecules of 1,3-butadiene readily undergo oxidative cyclization with a Ni(0) metal to form bis-allylnickel species. Palladium(O) complexes also form bis-allylpalladium species of structural similarity (Scheme 2). The bis-allylpalladium complexes show amphiphilic reactivity and serve as an allyl cation equivalent in the presence of appropriate nucleophiles, and also serve as an allyl anion equivalent in the presence of appropriate electrophiles. Characteristically, the bis-allylnickel species is known to date only as a nucleophile toward carbonyl compounds (Eq. 1) [10,11],... [Pg.183]

The effective deprotonation of finorene (pATa = 22.6), 2-bromoflnorene (pATa = 20.0), 2,7-dibromofluorene (pA a 20.0), acetophenone (pATa = 24.7) and phenylacetonitrile (p a = 21.9) was shown, bnt not for weaker acids snch as 4-benzylpyridine (pATa = 26.7). The nsefulness of generated reagents 1 was Ulnstrated in reactions of nncleophihc addition to electrophiles, characteristic of the ordinary Grignard reagents (5, Tables 2 and 3), as will be reviewed in Section VI. [Pg.224]

When the hydro ligand is opposite a group of high trans influence, it shows a chemical behavior toward electrophiles characteristic of a hydridic hydrogen. Two examples are the interaction of HCl with... [Pg.305]

A few sulfate esters are chemically reactive and alkylate nucleophilic sites on macromolecules. This electrophilic characteristic implicates these conjugates as ultimate chemical toxicants. [Pg.307]

The bound fullerenes are capable of reacting with other compounds such as aza-crown ethers, which in turn can bind other compounds. Because of their oleflnic and electrophilic characteristics, fullerenes can react in several addition reactions, such as nucleophilic addition of amines, which can be used to achieve permanent fixation of fullerenes to polyamide and wool fibers. [Pg.182]

The examples of basic substances used as catalysts in these and the following illustrations do not differ fundamentally from those considered in illustrations of the Br0nsted concept of a base. Admittedly, these substances are proton acceptors, but they can and do react with acid substances other than protons. The proton is only one of many acid groups or compounds having similar electrophilic characteristics. Br0nsted s bases are proton acceptors because they can furnish lone pairs of electrons to form a coordinate bond with an acid whether the acid is a proton, a hydronium ion, a neutral H-acid, or any other electron-pair acceptor. [Pg.113]

Nitration is important for two reasons firstly, because it is the most general process for the preparation of aromatic nitro compounds secondly, because of the part which it has played in the development of theoretical organic chemistry. It is of interest because of its own characteristics as an electrophilic substitution. [Pg.1]

Nitration can be effected under a wide variety of conditions, as already indicated. The characteristics and kinetics exhibited by the reactions depend on the reagents used, but, as the mechanisms have been elucidated, the surprising fact has emerged that the nitronium ion is preeminently effective as the electrophilic species. The evidence for the operation of other electrophiles will be discussed, but it can be said that the supremacy of one electrophile is uncharacteristic of electrophilic substitutions, and bestows on nitration great utility as a model reaction. [Pg.6]

The propylene double bond consists of a (7-bond formed by two ovedapping orbitals, and a 7t-bond formed above and below the plane by the side overlap of two p orbitals. The 7t-bond is responsible for many of the reactions that ate characteristic of alkenes. It serves as a source of electrons for electrophilic reactions such as addition reactions. Simple examples are the addition of hydrogen or a halogen, eg, chlorine ... [Pg.124]

The quiaones have excellent redox properties and are thus important oxidants ia laboratory and biological synthons. The presence of an extensive array of conjugated systems, especially the a,P-unsaturated ketone arrangement, allows the quiaones to participate ia a variety of reactioas. Characteristics of quiaoae reactioas iaclude nucleophilic substitutioa electrophilic, radical, and cycloaddition reactions photochemistry and normal and unusual carbonyl chemistry. [Pg.405]

The hydroxyben2oic acids have both hydroxyl and the carboxyl groups and, therefore, participate in chemical reactions characteristic of each of these moieties. In addition, these acids can undergo electrophilic ring substitution. The following reactions are discussed in terms of saUcyhc acid, but are characteristic of all the hydroxyben2oic acids. [Pg.284]

Reaction of Enolate Anions. In the presence of certain bases, eg, sodium alkoxide, an ester having a hydrogen on the a-carbon atom undergoes a wide variety of characteristic enolate reactions. Mechanistically, the base removes a proton from the a-carbon, giving an enolate that then can react with an electrophile. Depending on the final product, the base may be consumed stoichiometricaHy or may function as a catalyst. Eor example, the sodium alkoxide used in the Claisen condensation is a catalyst ... [Pg.389]

Hydroxythiophene also exists mainly in ketonic forms. Electrophilic reagents react either at oxygen or at C-5. O-Methyl and O-acetyl derivatives are obtained in alkaline solution, probably through intermediacy of the anion. In acidic solution, coupling with benzenediazonium ion, a characteristic phenolic reaction, is found to take place (Scheme 72). [Pg.76]

Both 1,2- and 2,1-benzisothiazoles react with electrophiles to give 5- and 7-substituted products (see Section 4.02.3.2). The isothiazole ring has little effect on the normal characteristics of the benzene ring. C-Linked substituents react almost wholly normally, the isothiazole ring having little effect except that phenyl substituents are deactivated (see Section 4.17.2.1). There are, however, considerable differences in the ease of decarboxylation of the carboxylic acids, the 4-isomer being the most stable (see Section 4.02.3.3). [Pg.153]

In order for a substitution to occur, a n-complex must be formed. The term a-complex is used to describe an intermediate in which the carbon at the site of substitution is bonded to both the electrophile and the hydrogen that is displaced. As the term implies, a a bond is formed at the site of substitution. The intermediate is a cyclohexadienyl cation. Its fundamental structural characteristics can be described in simple MO terms. The a-complex is a four-7t-electron delocalized system that is electronically equivalent to a pentadienyl cation (Fig. 10.1). There is no longer cyclic conjugation. The LUMO has nodes at C-2 and C-4 of the pentadienyl structure, and these positions correspond to the positions meta to the site of substitution on the aromatic ring. As a result, the positive chargex)f the cation is located at the positions ortho and para to the site of substitution. [Pg.553]

The reaction exhibits other characteristics typical of an electrophilic aromatic substitution. Examples of electrophiles that can effect substitution for silicon include protons and the halogens, as well as acyl, nitro, and sulfonyl groups. The feet that these reactions occur very rapidly has made them attractive for situations where substitution must be done under very mild conditions. ... [Pg.589]

In other work Rozen added molecular fluorine to a steroidal ene-one dissolved in ethanol at low temperatures to produce a vicinal difluonde in a cleaner, better yield reaction than previously obtainable [55] Although the reaction was not general, the stereoselectivity was very high, and contrary to addition of other halogens, addition was r>ii, characteristic of an electrophilic addition pathway... [Pg.110]

Characteristically, the reagents that react with the aromatic ring of benzene and its der ivatives are electrophiles. We aheady have some experience with electrophihc reagents, par ticulariy with respect to how they react with alkenes. Electrophilic reagents add to alkenes. [Pg.473]

Electrophilic attack can occur on the /3-carbon atom as well as on the nitrogen atom. The fact that enamines are basic compounds is a further characteristic property. [Pg.101]

These singlet and triplet state species exhibit the important differences in chemical behavior to be expected. The former species, with their analogy to carbonium ions, are powerful electrophiles and the relative rates of their reaction with a series of substrates increases with the availability of electrons at the reaction center their addition reactions with olefins are stereospecific. Triplet state species are expected to show the characteristics of radicals i.e., the relative rates of additions to olefins do not follow the same pattern as those of electrophilic species and the additions are not stereospecific. [Pg.60]

The factors in carboaromatic nucleophilic displacements summarized in this section are likely to be characteristic of heteroaromatic reactions and can be used to rationalize the behavior of azine derivatives. The effect of hydrogen bonding and of complexing with metal compounds in providing various degrees of electrophilic catalysis (cf. Section II, C) would be expected to be more extensive in heteroaromatics. [Pg.159]

The azinones and their reaction characteristics are discussed in some detail in Section II, E. Because of their dual electrophilic-nucleophilic nature, the azinones may be bifunctional catalysts in their own formation (cf. discussion of autocatalysis below) or act as catalysts for the desired reaction from which they arise as byproducts. The uniquely effective catalysis of nucleophilic substitution of azines has been noted for 2-pyridone. [Pg.193]

Qualitative models of reactivity and quantum mechanical calculations of reaction paths both indicate an angular approach of the attacking nucleophile to the first-row sp -hybridized electrophilic centers M at intermediate and reactive distances, 29. The geometry of 29 is also characteristic for the case of nucleophilic addition to electron-deficient centers of main-group 12 and 13 elements. By contrast, a linear arrangement 30 of making and breaking bonds is required for sp -hybridized first-row centers (C, N, O)... [Pg.191]

As a result, we could open the door to a new frontier in indole chemistry. Various 1-hydroxyindoles (4a), l-hydroxytryptophans(la), 1-hydroxytryptamines (lb), and their derivatives have been given birth for the first time. As predicted, 1-hydroxytryptophan and 1-hydroxytryptamine derivatives are found to undergo previously unknown nucleophilic substitution reactions. In addition, we have been uncovering many interesting reactivities characteristic of 1-hydroxyindole structures. From the synthetic point of view, useful building blocks for indole alkaloids, hither to inaccessible by the well-known electrophilic reactions in indole chemistry, have now become readily available. Many biologically interesting compounds have been prepared as well. [Pg.103]

The cyclic diazo compounds (diazirines 65) are very unreactive compounds. Specially noticeable is the absence of the reactivity toward electrophilic reagents which is characteristic of the linear isomers. Acids or aldehydes which react smoothly with the aliphatic diazo compounds are without action on the cyclic diazo compounds. Iodine does not attack the cyclic diazo compounds. [Pg.126]

What about the second reactant, HBr As a strong acid, HBr is a powerful proton (H+) donor and electrophile. Thus, the reaction between HBr and ethylene is a typical electrophile-nucleophile combination, characteristic of all polar reactions. [Pg.147]

The most common reaction of aromatic compounds is electrophilic aromatic substitution. That is, an electrophile reacts with an aromatic ring and substitutes for one of the hydrogens. The reaction is characteristic of all aromatic rings, not just benzene and substituted benzenes. In fact, the ability of a compound to undergo electrophilic substitution is a good test of aromaticity- . [Pg.547]


See other pages where Electrophile characteristics is mentioned: [Pg.1016]    [Pg.789]    [Pg.218]    [Pg.1083]    [Pg.194]    [Pg.158]    [Pg.322]    [Pg.1016]    [Pg.789]    [Pg.218]    [Pg.1083]    [Pg.194]    [Pg.158]    [Pg.322]    [Pg.99]    [Pg.405]    [Pg.110]    [Pg.403]    [Pg.409]    [Pg.116]    [Pg.374]    [Pg.376]    [Pg.560]    [Pg.566]    [Pg.579]    [Pg.405]    [Pg.185]    [Pg.2]    [Pg.2]    [Pg.244]   
See also in sourсe #XX -- [ Pg.149 , Pg.150 ]

See also in sourсe #XX -- [ Pg.149 , Pg.150 ]

See also in sourсe #XX -- [ Pg.190 ]

See also in sourсe #XX -- [ Pg.197 ]




SEARCH



© 2024 chempedia.info