Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfonates petroleum

Xanthates and dithiophosphates dominate sulfide flotation usage, though several other collectors including more recently developed ones are gaining acceptance rapidly (43). As of this writing, this is an active area of research. Many of the sulfide collectors were first used ia the mbber iadustry as vulcanizers (16). Fatty acids, amines, and sulfonates dominate the nonsulfide flotation usage. The fatty acids are by-products from natural plant or animal fat sources (see Fats and fatty oils). Similarly petroleum sulfonates are by-products of the wood (qv) pulp (qv) iadustry, and amines are generally fatty amines derived from fatty acids. [Pg.412]

By 1980, research and development shifted from relatively inexpensive surfactants such as petroleum sulfonates to more cosdy but more effective surfactants tailored to reservoir and cmde oil properties. Critical surfactant issues are performance in saline injection waters, adsorption on reservoir rock, partitioning into reservoir cmde oil, chemical stabiUty in the reservoir, interactions with the mobiUty control polymer, and production problems caused by resultant emulsions. Reservoir heterogeneity can also greatly reduce process effectiveness. The decline in oil prices in the early 1980s halted much of the work because of the relatively high cost of micellar processes. [Pg.194]

Surfactants evaluated in surfactant-enhanced alkaline flooding include internal olefin sulfonates (259,261), linear alkyl xylene sulfonates (262), petroleum sulfonates (262), alcohol ethoxysulfates (258,261,263), and alcohol ethoxylates/anionic surfactants (257). Water-thickening polymers, either xanthan or polyacrylamide, can reduce injected fluid mobiHty in alkaline flooding (264) and surfactant-enhanced alkaline flooding (259,263). The combined use of alkah, surfactant, and water-thickening polymer has been termed the alkaH—surfactant—polymer (ASP) process. Cross-linked polymers have been used to increase volumetric sweep efficiency of surfactant—polymer—alkaline agent formulations (265). [Pg.194]

Petroleum and Goal. The alkanolarnines have found wide use in the petroleum industry. The ethanolamines are used as lubricants and stabilizers in drilling muds. Reaction products of the ethan olamines and fatty acids are used as emulsion stabilizers, chemical washes, and bore cleaners (168). Oil recovery has been enhanced through the use of ethan olamine petroleum sulfonates (169—174). OH—water emulsions pumped from wells have been demulsifted through the addition of triethanolarnine derivatives. Alkanolarnines have been used in recovering coal in aqueous slurries and as coal—oil mix stabilizers (175—177). [Pg.11]

Petroleum sulfonates have traditionally been produced by both batch and continuous treatment of petroleum oils with oleum. These processes have been covered in several reviews (138,139). Natural petroleum sulfonates are coproducts in the manufacture of a variety of refined oils, most notably white (mineral) oils, lube oils, and process oils (plasticizer oils for mbber compounding). The feedstocks are selected primarily on the basis of the desired characteristics of the refined oils which generally contain 15—30% aromatics. [Pg.80]

Sulfonates for Lube Additives. Most petroleum sulfonates used as lube additives are based on calcium or magnesium salts. These salts can be produced by direct neutralization of the sulfonic acid with Ca(OH)2 or Mg(OH)2, or by use of a metathesis process involving the sodium salt ... [Pg.81]

In some cases, a mixture of natural petroleum feedstock is preblended with synthetic alkylated aromatics, such as detergent aromatic alkylate bottoms or with first-intent synthetic mono- or dialkylated aromatics, selected to provide a suitable molecular weight for cosulfonation and subsequent processing. The use of blended feedstocks may eliminate the need for conducting an oil extraction—concentrating step, particularly for a typical 40% Ca or Mg petroleum sulfonated product. [Pg.81]

The presence of polysulfonates in petroleum sulfonates used in lube formulations has a destabilizing effect on the formulation stabiUty and function of the sulfonate in motor oils, etc. Special techniques are utilized to help reduce the carryover of residual sludge components, including the use of hydrocarbon solvents such as hexane or heptane to faciUtate separation of sludge, often with centrihigation. Other desludging procedures include water wash, H2SO4 wash, clay percolation, and filtration. [Pg.81]

Shell is the sole principal U.S. manufacturer of petroleum sulfonate having an estimated aimual plant capacity of ca 27,000 metric tons Witco and Peimrico-Morco are beheved to supply a total of ca 7,000 metric tons aimuaHy. [Pg.81]

The equivalent weight distribution of natural petroleum sulfonates depends on the boiling range of the aromatic components in the feedstock, but generally consists of a broad continuum of molecular weight components (139). For many appHcations it is precisely this property of derived petroleum sulfonates that provides the unique properties, such as emulsification. Conversely, most oil-soluble synthetic sulfonates have much more limited components and molecular weight distribution. [Pg.81]

Petroleum Sulfonation Process Developments. Cmde oil and/or topped cmde oil were sulfonated using SO by Marathon Oil... [Pg.82]

Micellar/polymer (MP) chemical enhanced oil recovery systems have demonstrated the greatest potential of all of the recovery systems under study (170) and equivalent oil recovery for mahogany and first-intent petroleum sulfonates has been shown (171). Many somewhat different sulfonate, ie, slug, formulations, slug sizes (pore volumes), and recovery design systems were employed. Most of these field tests were deemed technically successful, but uneconomical based on prevailing oil market prices (172,173). [Pg.82]

Amoco developed polybutene olefin sulfonate for EOR (174). Exxon utilized a synthetic alcohol alkoxysulfate surfactant in a 104,000 ppm high brine Loudon, Illinois micellar polymer small field pilot test which was technically quite successful (175). This surfactant was selected because oil reservoirs have brine salinities varying from 0 to 200,000 ppm at temperatures between 10 and 100°C. Petroleum sulfonate apphcabdity is limited to about 70,000 ppm salinity reservoirs, even with the use of more soluble cosurfactants, unless an effective low salinity preflush is feasible. [Pg.82]

An assessment of the toxicity potential of chemicals used in EOR has been reviewed (181). A series of first-intent petroleum sulfonates derived from petroleum fractions were synthesized along with a series of od-soluble synthetic sulfonates. Their properties and preliminary od recoveries have been reported (182). [Pg.82]

E. Meyer, Petroleum Sulfonates—ChemicalMmphihians, Sonnebom Chemical Refining Corp., New York, 1960. [Pg.92]

E. A. Knaggs, M. Nussbaum, J. Carlson, and co-workers, "Petroleum Sulfonate Utilization ia Enhanced Oil Recovery," Society of Petroleum Engineers 51 stMnnualMeeting, SPE paper 6006, New Odeans, La., Oct. 3—6,1976. [Pg.92]

Sulfonic acid salts have found widespread use in the area of corrosion inhibition. Lubrizol Corporation produces a wide variety of sulfonic acids, particularly in the form of magnesium salts, for use in lubricant formulations, anticorrosion coatings, greases, and resins (146,147). Petroleum sulfonates are used in epoxy resin elastomers to improve anticorrosion properties of coatings and sealants (qv) (148,149). [Pg.103]

Petroleum sulfonates are widely used as solubilizers, dispersants (qv), emulsifiers, and corrosion inhibitors (see Corrosion and corrosion inhibitors). More recentiy, they have emerged as the principal surfactant associated with expanding operations in enhanced oil recovery (66). Alkaline-earth salts of petroleum sulfonates are used in large volumes as additives in lubricating fluids for sludge dispersion, detergency, corrosion inhibition, and micellar solubilization of water. The chemistry and properties of petroleum sulfonates have been described (67,68). Principal U.S. manufacturers include Exxon and Shell, which produce natural petroleum sulfonates, and Pilot, which produces synthetics. [Pg.241]

E. A. Knaggs and J. W. Hodge, Petroleum Sulfonates—Key Process Chemicals in Micellar Polymer Oil Recovery Systems, American Chemical Society,... [Pg.262]

Surface-active compounds, especially the anionic surfactants, are derived from fossil raw materials as well as from recent raw materials. The portion of the biomass on the production of anionic surfactants is about 75% if the soap, the quantitatively most important anionic surfactant, is included. Considering only the synthetic surfactants, the syndets, the portion of fossil raw materials in the production of these surfactants, is about 75%. Without the lignosulfonates (and the petroleum sulfonates) this portion is about 90%. Due to strong efforts... [Pg.1]

Emulsifiers have been used to prepare oil-external emulsion drilling fluids. Surfactants used as emulsifiers include fatty acid salts, fatty acid amides, petroleum sulfonates, and lignosulfo-nates. [Pg.13]

Both nonionic and anionic surfactants have been evaluated in this application (488,489) including internal olefin sulfonates (487, 490), linear alkylxylene sulfonates (490), petroleum sulfonates (491), alcohol ethoxysulfates (487,489,492). Ethoxylated alcohols have been added to some anionic surfactant formulations to improve interfacial properties (486). The use of water thickening polymers, either xanthan or polyacrylamide to reduce injected fluid mobility mobility has been proposed for both alkaline flooding (493) and surfactant enhanced alkaline flooding (492). Crosslinked polymers have been used to increase volumetric sweep efficiency of surfactant - polymer - alkaline agent formulations (493). [Pg.44]

The interfacial tension behavior between a crude oil (as opposed to pure hydrocarbon) and an aqueous surfactant phase as a function of temperature has not been extensively studied. Burkowsky and Marx T181 observed interfacial tension minima at temperatures between 50 and 80°C for crude oils with some surfactant formulations, whereas interfacial tensions for other formulations were not affected by temperature changes. Handy et al. [191 observed little or no temperature dependence (25-180°C) for interfacial tensions between California crude and aqueous petroleum sulfonate surfactants at various NaCI concentrations. In contrast, for a pure hydrocarbon or mineral oil and the same surfactant systems, an abrupt decrease in interfacial tension was observed at temperatures in excess of 120°C 1 20]. Non ionic surfactants showed sharp minima of interfacial tension for crude... [Pg.328]


See other pages where Sulfonates petroleum is mentioned: [Pg.487]    [Pg.742]    [Pg.414]    [Pg.194]    [Pg.80]    [Pg.81]    [Pg.82]    [Pg.82]    [Pg.83]    [Pg.86]    [Pg.86]    [Pg.103]    [Pg.241]    [Pg.241]    [Pg.90]    [Pg.871]    [Pg.2]    [Pg.3]    [Pg.112]    [Pg.41]    [Pg.42]    [Pg.331]    [Pg.352]    [Pg.379]    [Pg.643]    [Pg.643]    [Pg.689]   
See also in sourсe #XX -- [ Pg.240 , Pg.284 ]

See also in sourсe #XX -- [ Pg.308 ]

See also in sourсe #XX -- [ Pg.10 ]

See also in sourсe #XX -- [ Pg.151 ]

See also in sourсe #XX -- [ Pg.55 ]




SEARCH



© 2024 chempedia.info