Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soybean content

Quality of soybean oil is affected by a number of factors such as quality of soybeans, content of moisture, storage temperature and processing conditions, exposure to air, prooxidants, light, minor compounds such as free fatty acids, mono- and diacylglycerols, phospholipids, oxidized triacylglycerols, tocopherols, triterpene alcohols, phytosterols, isoflavonones, and possibly some unknown compounds contained in soybean oil. Some of these minor compounds affect the oxidative stability of vegetable oils. [Pg.162]

The identity of the moiety (other than glycerol) esterified to the phosphoric group determines the specific phosphoHpid compound. The three most common phosphoHpids in commercial oils are phosphatidylcholine or lecithin [8002-45-5] (3a), phosphatidylethanolamine or cephalin [4537-76-2] (3b), and phosphatidjlinositol [28154-49-7] (3c). These materials are important constituents of plant and animal membranes. The phosphoHpid content of oils varies widely. Laurie oils, such as coconut and palm kernel, contain a few hundredths of a percent. Most oils contain 0.1 to 0.5%. Com and cottonseed oils contain almost 1% whereas soybean oil can vary from 1 to 3% phosphoHpid. Some phosphoHpids, such as dipaLmitoylphosphatidylcholine (R = R = palmitic R" = choline), form bilayer stmetures known as vesicles or Hposomes. The bdayer stmeture can microencapsulate solutes and transport them through systems where they would normally be degraded. This property allows their use in dmg deHvery systems (qv) (8). [Pg.123]

LPC Product Quality. Table 10 gives approximate analyses of several LPC products. Amino acid analyses of LPC products have been pubhshed including those from alfalfa, wheat leaf, barley, and lupin (101) soybean, sugar beet, and tobacco (102) Pro-Xan LPC products (100,103) and for a variety of other crop plants (104,105). The composition of LPCs varies widely depending on the raw materials and processes used. Amino acid profiles are generally satisfactory except for low sulfur amino acid contents, ie, cystine and methionine. [Pg.469]

The sulfur amino acid content of soy protein can be enhanced by preparing plasteins from soy protein hydrolysate and sources of methionine or cystine, such as ovalbumin hydrolysate (plastein AB), wool keratin hydrolysate (plastein AC), or L-methionine ethyl ester [3082-77-7] (alkaU saponified plastein) (153). Typical PER values for a 1 2 mixture of plastein AC and soybean, and a 1 3 mixture of alkah-saponified plastein and soybean protein, were 2.86 and 3.38, respectively, as compared with 1.28 for the soy protein hydrolysate and 2.40 for casein. [Pg.471]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

Other materials that are often referred to as secondary plasticizers iaclude materials such as epoxidized soybean oil (ESBO) and epoxidized linseed oil (ELO) and similar materials. These can act as lubricants but also as secondary stabilizers to PVC due to thein epoxy content which can remove HCl from the degrading polymer. [Pg.123]

Solvent Extraction. Extraction processes, used for separating one substance from another, are commonly employed in the pharmaceutical and food processing industries. Oilseed extraction is the most widely used extraction process on the basis of tons processed. Extraction-grade hexane is the solvent used to extract soybeans, cottonseed, com, peanuts, and other oilseeds to produce edible oils and meal used for animal feed supplements. Tight specifications require a narrow distillation range to minimize solvent losses as well as an extremely low benzene content. The specification also has a composition requirement, which is very unusual for a hydrocarbon, where the different components of the solvent must be present within certain ranges (see Exthaction). [Pg.280]

Compositions of the four oilseeds are given in Table 2. All except soybeans have a high content of seed coat or hull. Because of the high hull content, the cmde fiber content of the other oilseeds is also high. Confectionery varieties of sunflower seed may contain up to 28% cmde fiber on a dry basis (8). Soybeans differ from the other oilseeds in their high protein and low oil content. AH these oilseeds, however, yield high protein meals when dehuUed and defatted. [Pg.292]

Lipids. Representative fatty acid compositions of the unprocessed triglyceride oils found in the four oilseeds are given in Table 4 (see Fats and FATTY oils). Cottonseed, peanut, and sundower oils are classified as oleic—linoleic acid oils because of the high (>50%) content of these fatty acids. Although the oleic and linoleic acid content of soybean oils is high, it is distinguished from the others by a content of 4—10% of linolenic acid, and hence is called a linolenic acid oil. [Pg.294]

Although soybeans contribute about one-half of the world production of oilseeds, they supply less than one-third of the total edible vegetable fats and oils (Table 11) because of their relatively low oil content. Nonetheless, production of soybean oil exceeds the combined production of cottonseed, peanut, and sunflower seed oils. [Pg.299]

Pea.nuts, The proteins of peanuts are low in lysine, threonine, cystine plus methionine, and tryptophan when compared to the amino acid requirements for children but meet the requirements for adults (see Table 3). Peanut flour can be used to increase the nutritive value of cereals such as cornmeal but further improvement is noted by the addition of lysine (71). The trypsin inhibitor content of raw peanuts is about one-fifth that of raw soybeans, but this concentration is sufficient to cause hypertrophy (enlargement) of the pancreas in rats. The inhibitors of peanuts are largely inactivated by moist heat treatment (48). As for cottonseed, peanuts are prone to contamination by aflatoxin. FDA regulations limit aflatoxin levels of peanuts and meals to 100 ppb for breeding beef catde, breeding swine, or poultry 200 ppb for finishing swine 300 ppb for finishing beef catde 20 ppb for immature animals and dairy animals and 20 ppb for humans. [Pg.301]

Polyunsaturated fatty acids in vegetable oils, particularly finolenic esters in soybean oil, are especially sensitive to oxidation. Even a slight degree of oxidation, commonly referred to as flavor reversion, results in undesirable flavors, eg, beany, grassy, painty, or fishy. Oxidation is controlled by the exclusion of metal contaminants, eg, iron and copper addition of metal inactivators such as citric acid minimum exposure to air, protection from light, and selective hydrogenation to decrease the finolenate content to ca 3% (74). Careful quality control is essential for the production of acceptable edible soybean oil products (75). [Pg.302]

Agricultural uses for ammonium thiosulfate take advantage of both the sulfur and ammonium content by blending with other nitrogen fertilizers such as urea (71). Some foHar-spray fertilizers contain ammonium thiosulfate together with other metal micronutrients (72,73). Ammonium thiosulfate or mixtures with ammonium nitrate can also be used as desiccants and defoHants ia crop-beariag plants such as cotton (qv), soybean, alfalfa, rice, and peppers (74,75). [Pg.31]

Extraction of proteia requires breaking the cell wall to release the cytoplasmic contents. This can be achieved by high speed ball or coUoid mills or by high pressure (50—60 Mpa) extmsion. Proteia is extracted by alkaline treatment followed by precipitation after enzymatic hydrolysis of nucleic acids. Although the proteia can be spun iato fibers or texturized, such products are more expensive than those derived from soybean and there is no market for them. [Pg.394]

Soybean Protein Isolates. Soybean protein isolates, having a protein content of >90 wt%, are the only vegetable proteins that are widely used in imitation dairy products (1). Most isolates are derived from isoelectric precipitation, so that the soybean protein isolates have properties that are similar to those of casein. They are insoluble at thek isoelectric point, have a relatively high proportion of hydrophobic amino acid residues, and are calcium-sensitive. They differ from casein in that they are heat-denaturable and thus heat-labile. The proteins have relatively good nutritional properties and have been increasingly used as a principal source of protein. A main deterrent to use has been the beany flavor associated with the product. Use is expected to increase in part because of lower cost as compared to caseinates. There has been much research to develop improved soybean protein isolates. [Pg.442]

Phylloquinone (vitamin Kl) is the form of vitamin K synthetized by mainly green leafy vegetables and such also appears in plant oils (soybean, cottonseed, canola, olive). Both are good sources for a daily supply, although the need of such a supply is still under discussion. Table 1 shows some good sources and their content of vitamin Kl. [Pg.1301]

The raw materials for the manufacture of soap, the alkali salts of saturated and unsaturated C10-C20 carboxylic acids, are natural fats and fatty oils, especially tallow oil and other animal fats (lard), coconut oil, palm kernel oil, peanut oil, and even olive oil. In addition, the tall oil fatty acids, which are obtained in the kraft pulping process, are used for soap production. A typical formulation of fats for the manufacture of soap contains 80-90% tallow oil and 10-20% coconut oil [2]. For the manufacture of soft soaps, the potassium salts of fatty acids are used, as are linseed oil, soybean oil, and cottonseed oil acids. High-quality soap can only be produced by high-quality fats, independent of the soap being produced by saponification of the natural fat with caustic soda solution or by neutralization of distilled fatty acids, obtained by hydrolysis of fats, with soda or caustic soda solutions. Fatty acids produced by paraffin wax oxidation are of inferior quality due to a high content of unwanted byproducts. Therefore in industrially developed countries these fatty acids are not used for the manufacture of soap. This now seems to be true as well for the developing countries. [Pg.2]

The major isoflavones in soy are genistein, daidzein and glycitein (reviewed by Setchell, 1998 Setchell and Cassidy, 1999). Isoflavone content varies among soybean varieties, growing conditions and soil (Wang and Murphy,... [Pg.89]

WANG H-J and MURPHY p A (1994a) Isoflavone content in commercial soybean foods. J Agric Food Chem 42, 1666-73. [Pg.106]

Sinnecker, P. et al.. Relationship between color (instrumental and visual) and chlorophyll contents in soybean seeds during ripening, J. Agric. Food Chem., 50, 3961, 2002. [Pg.446]


See other pages where Soybean content is mentioned: [Pg.234]    [Pg.124]    [Pg.427]    [Pg.99]    [Pg.103]    [Pg.271]    [Pg.541]    [Pg.31]    [Pg.291]    [Pg.291]    [Pg.296]    [Pg.300]    [Pg.302]    [Pg.303]    [Pg.27]    [Pg.439]    [Pg.442]    [Pg.442]    [Pg.445]    [Pg.483]    [Pg.722]    [Pg.422]    [Pg.170]    [Pg.91]    [Pg.97]    [Pg.190]    [Pg.201]    [Pg.210]    [Pg.244]    [Pg.8]    [Pg.247]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Linolenate content, of soybean

Protein content in soybeans

Soybeans phytic acid content

Soybeans, mineral content

© 2024 chempedia.info