Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processes solution polymerization

Since mixing and good heat transfer are of vital importance in viscous polymerization reactions, a mechanically agitated continuous stirred-tank reactor is widely used in polymerization processes. Solution polymerization, emulsion polymerization, and solid-catalyzed olefin polymerization are all carried out in a mechanically agitated slurry reactor. [Pg.143]

The polymerizations on supported metal oxide catalysts can be carried Out by three different processes solution polymerization, suspension... [Pg.781]

Solution process. Solution polymerizations are also equilibrium processes, with the reaction also often driven by removal of the small byproduct. The product may be recovered from the reaction system through addition of the reaction liquid to a non-solvent, removal of the solvent, or direct precipitation of the polymer from the reaction system. Because the reaction is often run at a lower temperature, more reactive reactants are generally required. [Pg.1050]

Like the slurry polymerization processes, solution polymerization uses one or two stirred autoclaves, but the polymerization takes place at much higher temperatures (up to 250°C) and pressures (up to 100 bar). The average reactor residence times in solution processes are much shorter than in the processes discussed previously, in the order of 5-10 min, and this allows for much faster grade transition. Solution polymerization also allows the use of higher a-olefins comonomers, such as 1-hexene and 1-octene, which produce LLDPE with excellent properties. Solution processes are also most adaptable to metallocene catalyst technology because the catalyst does not need to be supported. [Pg.108]

Solution Polymerization Process. Solution polymerization processes are often used when polymerization thermodynamics are largely exothermic, as in the case of polybutadiene. The solvent not only acts as a diluent, but also allows for efficient transfer of the heat of polymerization to a heat sink. Given the proper... [Pg.883]

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

M ass Process. In the mass (or bulk) (83) ABS process the polymerization is conducted in a monomer medium rather than in water. This process usually consists of a series of two or more continuous reactors. The mbber used in this process is most commonly a solution-polymerized linear polybutadiene (or copolymer containing sytrene), although some mass processes utilize emulsion-polymerized ABS with a high mbber content for the mbber component (84). If a linear mbber is used, a solution of the mbber in the monomers is prepared for feeding to the reactor system. If emulsion ABS is used as the source of mbber, a dispersion of the ABS in the monomers is usually prepared after the water has been removed from the ABS latex. [Pg.204]

Development efforts at Celanese Research Co. estabHshed soHd-state polymerization as the most practical process for engineering scale-up. Homogeneous solution polymerization of PBI in polyphosphoric acid was eliminated because of the need to work with low soHd compositions (in the range of 3—5%) during the precipitation, neutralization, and washing steps required for isolation of the product. [Pg.67]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

Solution Polymerization. Two solution polymerization technologies ate practiced. Processes of the first type utilize heavy solvents those of the second use molten PE as the polymerization medium (57). Polyethylene becomes soluble ia saturated C —hydrocarbons above 120—130°C. Because the viscosity of HDPE solutions rapidly iacrease with molecular weight, solution polymerization is employed primarily for the production of low mol wt resias. Solution process plants were first constmcted for the low pressure manufacture of PE resias ia the late 1950s they were later exteasively modified to make their operatioa economically competitive. [Pg.386]

Solution Polymerization. Two types of solution polymerization technologies are used for LLDPE synthesis. One process utilizes heavy solvents the other is carried out in mixtures of supercritical ethylene and molten PE as a polymerization medium. Original solution processes were introduced for low pressure manufacture of PE resins in the late 1950s subsequent improvements of these processes gradually made them economically competitive with later, more advanced technologies. [Pg.399]

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

Solution Polymerization. In this process an inert solvent is added to the reaction mass. The solvent adds its heat capacity and reduces the viscosity, faciUtating convective heat transfer. The solvent can also be refluxed to remove heat. On the other hand, the solvent wastes reactor space and reduces both rate and molecular weight as compared to bulk polymerisation. Additional technology is needed to separate the polymer product and to recover and store the solvent. Both batch and continuous processes are used. [Pg.437]

Anionic polymerization offers fast polymerization rates on account of the long life-time of polystyryl carbanions. Early studies have focused on this attribute, most of which were conducted at short reactor residence times (< 1 h), at relatively low temperatures (10—50°C), and in low chain-transfer solvents (typically benzene) to ensure that premature termination did not take place. Also, relatively low degrees of polymerization (DP) were typically studied. Continuous commercial free-radical solution polymerization processes to make PS, on the other hand, operate at relatively high temperatures (>100° C), at long residence times (>1.5 h), utilize a chain-transfer solvent (ethylbenzene), and produce polymer in the range of 1000—1500 DP. [Pg.517]

The original SBR process is carried out at. 50° C and is referred to as hot polymerization. It accounts for only about 5% of aU the mbber produced today. The dominant cold polymerization technology today employs more active initiators to effect polymerization at about 5°C. It accounts for about 85% of the products manufactured. Typical emulsion polymerization processes incorporate about 75% butadiene. The initiators are based on persulfate in conjunction with mercaptans (197), or organic hydroperoxide in conjunction with ferrous ion (198). The rest of SBR is produced by anionic solution polymerization. The density of unvulcanized SBR is 0.933 (199). The T ranges from —59" C to —64 C (199). [Pg.345]

AGE-Gontaining Elastomers. The manufacturing process for ECH—AGE, ECH—EO—AGE, ECH—PO—AGE, and PO—AGE is similar to that described for the ECH and ECH—EO elastomers. Solution polymerization is carried out in aromatic solvents. Slurry systems have been reported for PO—AGE (39,40). When monomer reactivity ratios are compared, AGE (and PO) are approximately 1.5 times more reactive than ECH. Since ECH is slightly less reactive than PO and AGE and considerably less reactive than EO, background monomer concentration must be controlled in ECH—AGE, ECH—EO—AGE, and ECH—PO—AGE synthesis in order to obtain a uniform product of the desired monomer composition. This is not necessary for the PO—AGE elastomer, as a copolymer of the same composition as the monomer charge is produced. AGE content of all these polymers is fairly low, less than 10%. Methods of molecular weight control, antioxidant addition, and product work-up are similar to those used for the ECH polymers described. [Pg.555]

Solution Polymerization These processes may retain the polymer in solution or precipitate it. Polyethylene is made in a tubular flow reactor at supercritical conditions so the polymer stays in solution. In the Phillips process, however, after about 22 percent conversion when the desirable properties have been attained, the polymer is recovered and the monomer is flashed off and recyled (Fig. 23-23 ). In another process, a solution of ethylene in a saturated hydrocarbon is passed over a chromia-alumina catalyst, then the solvent is separated and recyled. Another example of precipitation polymerization is the copolymerization of styrene and acrylonitrile in methanol. Also, an aqueous solution of acrylonitrile makes a precipitate of polyacrylonitrile on heating to 80°C (176°F). [Pg.2102]

The production process consists of the stages of preparation of the monomer and additive solutions elimination of the dissolved oxygen from the solutions polymerization compounding (i.e., stabilization and granulation) drying, crushing, and packing of the finished product. [Pg.66]

Polymerization reactions can occur in bulk (without solvent), in solution, in emulsion, in suspension, or in a gas-phase process. Interfacial polymerization is also used with reactive monomers, such as acid chlorides. [Pg.315]

An attractive feature of using the solvent as an agent to control propagation in solution polymerization is that solvents when used are usually present in very large excess in relation to any radical species. Of course, economic, solubility, toxicity, waste disposal, and other considerations limit the range of solvents that can be employed in an industrial polymerization process. [Pg.425]

Acid chlorides are very reactive and have as a condensation product hydrochloric acid.4,7 9 This hydrochloric acid can form an amine salt with unreacted amine groups, which should be avoided. To prevent this happening, acid binders, which are more reactive than the amines, are added. Polyamidation can be earned out using a solution and with an interfacial method. With the interfacial method one has the choice between a stirred and an unstirred process. In an unstirred process, the polymerization is at the interface and a rope can be drawn from the interface,... [Pg.155]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

In this short initial communication we wish to describe a general purpose continuous-flow stirred-tank reactor (CSTR) system which incorporates a digital computer for supervisory control purposes and which has been constructed for use with radical and other polymerization processes. The performance of the system has been tested by attempting to control the MWD of the product from free-radically initiated solution polymerizations of methyl methacrylate (MMA) using oscillatory feed-forward control strategies for the reagent feeds. This reaction has been selected for study because of the ease of experimentation which it affords and because the theoretical aspects of the control of MWD in radical polymerizations has attracted much attention in the scientific literature. [Pg.253]

Reaction Mechanism. The reaction mechanism of the anionic-solution polymerization of styrene monomer using n-butyllithium initiator has been the subject of considerable experimental and theoretical investigation (1-8). The polymerization process occurs as the alkyllithium attacks monomeric styrene to initiate active species, which, in turn, grow by a stepwise propagation reaction. This polymerization reaction is characterized by the production of straight chain active polymer molecules ("living" polymer) without termination, branching, or transfer reactions. [Pg.296]

For purposes of simulation and illustration we have chosen a batch reactor, solution polymerization of methylmethacrylate (MMA). Kinetic data were taken from Schmidt and Ray (1981) and thermodynamic data from Bywater (1955). We do not here consider the influence of diffusion control on the termination or other rate processes because such effects may be small when in a solution which is siifHciently dilute or when the polymer is of low molecular weight. [Pg.323]


See other pages where Processes solution polymerization is mentioned: [Pg.305]    [Pg.305]    [Pg.397]    [Pg.167]    [Pg.280]    [Pg.259]    [Pg.265]    [Pg.400]    [Pg.419]    [Pg.420]    [Pg.521]    [Pg.242]    [Pg.5]    [Pg.3]    [Pg.239]    [Pg.67]    [Pg.190]    [Pg.210]    [Pg.356]    [Pg.12]    [Pg.78]    [Pg.82]    [Pg.244]    [Pg.338]    [Pg.184]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Polymeric solutions

Polymeric-based solution processing

Polymerization solution polymerizations

Solute process

Solution polymerization

Solution processability

Solution processes

Solution processing

Solutizer process

© 2024 chempedia.info