Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium carbon dioxide process

Soda ash (sodium) carbonate), mineral processing Combustion gases, lime-kiln gases Carbon dioxide Ammonia solution Ammonium bicarbonate production, ammonium carbonate production Stripping not practiced... [Pg.6]

When heated, sodium hydrogencarbonate readily decomposes evolving carbon dioxide, a reaction which leads to its use as baking powder when the carhon dioxide evolved aerates the dough. In the soda-ammonia process the carbon dioxide evolved is used to supplement the main carbon dioxide supply obtained by heating calcium carbonate ... [Pg.133]

Carbon dioxide is used in the manufacture of sodium carbonate by the ammonia-soda process, urea, salicyclic acid (for aspirin), fire extinguishers and aerated water. Lesser amounts are used to transfer heat generated by an atomic reactor to water and so produce steam and electric power, whilst solid carbon dioxide is used as a refrigerant, a mixture of solid carbon dioxide and alcohol providing a good low-temperature bath (195 K) in which reactions can be carried out in the laboratory. [Pg.182]

These equations tell us that the reverse process proton transfer from acids to bicarbon ate to form carbon dioxide will be favorable when of the acid exceeds 4 3 X 10 (pK, < 6 4) Among compounds containing carbon hydrogen and oxygen only car boxylic acids are acidic enough to meet this requirement They dissolve m aqueous sodium bicarbonate with the evolution of carbon dioxide This behavior is the basis of a qualitative test for carboxylic acids... [Pg.805]

The key compound m the synthesis of aspirin salicylic acid is prepared from phe nol by a process discovered m the nineteenth century by the German chemist Hermann Kolbe In the Kolbe synthesis also known as the Kolbe—Schmitt reaction, sodium phen oxide IS heated with carbon dioxide under pressure and the reaction mixture is subse quently acidified to yield salicylic acid... [Pg.1006]

This carbon dioxide-free solution is usually treated in an external, weU-agitated liming tank called a "prelimer." Then the ammonium chloride reacts with milk of lime and the resultant ammonia gas is vented back to the distiller. Hot calcium chloride solution, containing residual ammonia in the form of ammonium hydroxide, flows back to a lower section of the distiller. Low pressure steam sweeps practically all of the ammonia out of the limed solution. The final solution, known as "distiller waste," contains calcium chloride, unreacted sodium chloride, and excess lime. It is diluted by the condensed steam and the water in which the lime was conveyed to the reaction. Distiller waste also contains inert soHds brought in with the lime. In some plants, calcium chloride [10045-52-4], CaCl, is recovered from part of this solution. Close control of the distillation process is requited in order to thoroughly strip carbon dioxide, avoid waste of lime, and achieve nearly complete ammonia recovery. The hot (56°C) mixture of wet ammonia and carbon dioxide leaving the top of the distiller is cooled to remove water vapor before being sent back to the ammonia absorber. [Pg.523]

FMC makes sodium bicarbonate at the Green River complex by reaction of sesquicarbonate (Na2 CO3 -NaHC03 -2H2 O) with carbon dioxide recovered from a sodium phosphate plant. This fairly recently patented process avoids the energy intensive heating step (33). [Pg.527]

The basis of this process was the injection of sodium carbonate solution into the viscose, although direct injection of carbon dioxide gas that reacts with the viscose soda to form sodium carbonate could also be used (44). The carbonate route yielded a family of inflated fibers culminating in the absorbent multilimbed super inflated (SI) fiber (Eig. 5c). [Pg.350]

The earhest frothing process developed was the Dunlop process, which made use of chemical gelling agents, eg, sodium fluorosiUcate, to coagulate the mbber particles and deactivate the soaps. The Talalay process, developed later, employs freeze-coagulation of the mbber followed by deactivation of the soaps with carbon dioxide. The basic processes and a multitude of improvements are discussed extensively in Reference 3. A discussion more oriented to current use of these processes is given in Reference 115. [Pg.408]

Sodium bicarbonate may be prepared by the ammonia-salt (Solvay) process. Carbon dioxide is passed through a solution of sodium chloride in ammonia water. Sodium bicarbonate is precipitated and the ammonium chloride remains in solution. The ammonium chloride is heated with lime to regenerate ammonia (see Alkali AND CHLORINE PRODUCTS). [Pg.200]

Seaweeds. The eadiest successful manufacture of iodine started in 1817 using certain varieties of seaweeds. The seaweed was dried, burned, and the ash lixiviated to obtain iodine and potassium and sodium salts. The first process used was known as the kelp, or native, process. The name kelp, initially apphed to the ash of the seaweed, has been extended to include the seaweed itself. About 20 t of fresh seaweed was used to produce 5 t of air-dried product containing a mean of 0.38 wt % iodine in the form of iodides of alkah metals. The ash obtained after burning the dried seaweed contains about 1.5 wt % iodine. Chemical separation of the iodine was performed by lixiviation of the burned kelp, followed by soHd-Hquid separation and water evaporation. After separating sodium and potassium chloride, and sodium carbonate, the mother Hquor containing iodine as iodide was treated with sulfuric acid and manganese dioxide to oxidize the iodide to free iodine, which was sublimed and condensed in earthenware pipes (57). [Pg.361]

One ion-exchange process, which was used for several years by Quebec Lithium Corp., is based on the reaction of P-spodumene with an aqueous sodium carbonate solution in an autoclave at 190—250°C (21). A slurry of lithium carbonate and ore residue results, and is cooled and treated with carbon dioxide to solubilize the lithium carbonate as the bicarbonate. The ore residue is separated by filtration. The filtrate is heated to drive off carbon dioxide resulting in the precipitation of the normal carbonate. [Pg.222]

Potassium Carbonate. Except for small amounts produced by obsolete processes, eg, the leaching of wood ashes and the Engel-Precht process, potassium carbonate is produced by the carbonation, ie, via reaction with carbon dioxide, of potassium hydroxide. Potassium carbonate is available commercially as a concentrated solution containing ca 47 wt % K CO or in granular crystalline form containing 99.5 wt % K CO. Impurities are small amounts of sodium and chloride plus trace amounts (<2 ppm) of heavy metals such as lead. Heavy metals are a concern because potassium carbonate is used in the production of chocolate intended for human consumption. [Pg.532]

A.mmonia-Soda Process. Ammonium chloride is made as a by-product of the classic Solvay process, used to manufacture sodium carbonate (12,13) (see Alkali and chlorine products, sodium carbonate). The method iuvolves reaction of ammonia, carbon dioxide, and sodium chloride ia water... [Pg.364]

Sodium bicarbonate precipitates from solution and is recovered by filtration. Ammonium chloride is then crystallised from the filtrate, separated, washed, and dried. The exact proportion of ammonium chloride recovered depends on the relative demands for sodium carbonate and ammonium chloride. If economic conditions requite, part of the ammonia can be recovered and returned to the hrine-ammoniation step by distillation of the ammonium chloride solution ia the presence of lime. The spent calcium chloride Hquor, a final product ia manufacture of sodium carbonate by the ammonia—soda process, can also be used to obtain ammonium chloride. This Hquor is treated with ammonia and carbon dioxide... [Pg.364]

Early Synthesis. Reported by Kolbe in 1859, the synthetic route for preparing the acid was by treating phenol with carbon dioxide in the presence of metallic sodium (6). During this early period, the only practical route for large quantities of sahcyhc acid was the saponification of methyl sahcylate obtained from the leaves of wintergreen or the bark of sweet bitch. The first suitable commercial synthetic process was introduced by Kolbe 15 years later in 1874 and is the route most commonly used in the 1990s. In this process, dry sodium phenate reacts with carbon dioxide under pressure at elevated (180—200°C) temperature (7). There were limitations, however not only was the reaction reversible, but the best possible yield of sahcyhc acid was 50%. An improvement by Schmitt was the control of temperature, and the separation of the reaction into two parts. At lower (120—140°C) temperatures and under pressures of 500—700 kPa (5—7 atm), the absorption of carbon dioxide forms the intermediate phenyl carbonate almost quantitatively (8,9). The sodium phenyl carbonate rearranges predominately to the ortho-isomer. sodium sahcylate (eq. 8). [Pg.286]

At room temperature, Htde reaction occurs between carbon dioxide and sodium, but burning sodium reacts vigorously. Under controUed conditions, sodium formate or oxalate may be obtained (8,16). On impact, sodium is reported to react explosively with soHd carbon dioxide. In addition to the carbide-forrning reaction, carbon monoxide reacts with sodium at 250—340°C to yield sodium carbonyl, (NaCO) (39,40). Above 1100°C, the temperature of the DeviHe process, carbon monoxide and sodium do not react. Sodium reacts with nitrous oxide to form sodium oxide and bums in nitric oxide to form a mixture of nitrite and hyponitrite. At low temperature, Hquid nitrogen pentoxide reacts with sodium to produce nitrogen dioxide and sodium nitrate. [Pg.163]

Essentially no waste products are formed ia the USP process if hydriodic acid and either sodium hydroxide or sodium carbonate are used as reactants. Water results from use of the former a mole equivalent quantity of carbon dioxide is produced from the latter reagents. Higher quaUty grades may require some purification steps which may result ia wastes from the treatment. Disposal of these impurities must then be carried out. [Pg.190]

Strontium carbonate also precipitates from strontium sulfide solution with carbon dioxide. Hydrogen sulfide is generated as a by-product of this reaction and reacts with sodium hydroxide to produce sodium hydrosulfide, which is sold as by-product. The abiUty of the black ash process to produce a product exceeding 95% strontium carbonate, from ores containing <85% strontium sulfate, has led to its predorninance. [Pg.474]

Ma.nufa.cture. In a typical process, a solution of sodium carbonate is allowed to percolate downward through a series of absorption towers through which sulfur dioxide is passed countercurrently. The solution leaving the towers is chiefly sodium bisulfite of typically 27 wt % combined sulfur dioxide content. The solution is then mn into a stirred vessel where aqueous sodium carbonate or sodium hydroxide is added to the point where the bisulfite is fully converted to sulfite. The solution may be filtered if necessary to attain the required product grade. A pure grade of anhydrous sodium sulfite can then be crystallized above 40°C because the solubiUty decreases with increasing temperature. [Pg.149]

In a patented process, a stirred suspension of sodium sulfite is continuously treated with aqueous sodium hydroxide and a sulfur dioxide-containing gas at 60—85°C, and 96% pure anhydrous sodium sulfite is removed by filtration (336). In another continuous one-step process, substantially anhydrous sodium carbonate and sulfur dioxide are concurrently introduced into a saturated solution of sodium sulfite at pH 6.5—7.6 and above 35°C with continuous removal of sodium sulfite (337). [Pg.149]

Carbonates. Basic zirconium carbonate [37356-18-6] is produced in a two-step process in which zirconium is precipitated as a basic sulfate from an oxychloride solution. The carbonate is formed by an exchange reaction between a water slurry of basic zirconium sulfate and sodium carbonate or ammonium carbonate at 80°C (203). The particulate product is easily filtered. Freshly precipitated zirconium hydroxide, dispersed in water under carbon dioxide in a pressure vessel at ca 200—300 kPa (2—3 atm), absorbs carbon dioxide to form the basic zirconium carbonate (204). Washed free of other anions, it can be dissolved in organic acids such as lactic, acetic, citric, oxaUc, and tartaric to form zirconium oxy salts of these acids. [Pg.437]

Oxidative surface treatment processes can be gaseous, ie, air, carbon dioxide, and ozone Hquid, ie, sodium hypochlorite, and nitric acid or electrolytic with the fiber serving as the anode within an electrolytic bath containing sodium carbonate, nitric acid, ammonium nitrate, ammonium sulfate, or other electrolyte. Examples of electrolytic processes are described in the patent Hterature (39,40)... [Pg.5]

Lime-Kiln Operation. Gases containing up to 40% carbon dioxide from the lime kiln pass through a cyclone separator, which removes the bulk of entrained dust. The gas is then blown through the two scmbbers, which remove the finer dust, cooled, and passes iato an absorption tower. Here carbon dioxide may be recovered by the sodium carbonate or Girbotol process. [Pg.21]

The sodium carboaate process is used ia a number of dry-ice plants ia the United States, although its operating efficiency is generaHy not as high as that of processes using other solutions. These plants obtain the carbon dioxide from flue gases as weH as lime-kiln gases. [Pg.21]

Potassium Permanganate. Probably the most widely used process for removing traces of hydrogen sulfide from carbon dioxide is to scmb the gas with an aqueous solution saturated with potassium permanganate [7722-64-7]. Sodium carbonate is added to the solution as buffer. The reaction is as foUows ... [Pg.22]

Chlorine dioxide produced from the methanol reductant processes contains carbon dioxide and small amounts of formic acid. For this reason, sulfur dioxide and chloride-based chlorine dioxide processes are stih used for sodium chlorite production. This problem has been addressed by recycling a portion of the vapor from methanol-based generators so that formic acid further reacts to carbon dioxide ... [Pg.483]

Sodium chromate can be converted to the dichromate by a continuous process treating with sulfuric acid, carbon dioxide, or a combination of these two (Fig. 2). Evaporation of the sodium dichromate Hquor causes the precipitation of sodium sulfate and/or sodium bicarbonate, and these compounds are removed before the final sodium dichromate crystallization. The recovered sodium sulfate may be used for other purposes, and the sodium bicarbonate can replace some of the soda ash used for the roasting operation (76). The dichromate mother Hquor may be returned to the evaporators, used to adjust the pH of the leach, or marketed, usually as 69% sodium dichromate solution. [Pg.138]

A newer technology for the manufacture of chromic acid uses ion-exchange (qv) membranes, similar to those used in the production of chlorine and caustic soda from brine (76) (see Alkali and cm ORiNE products Chemicals frombrine Mep rane technology). Sodium dichromate crystals obtained from the carbon dioxide option of Figure 2 are redissolved and sent to the anolyte compartment of the electrolytic ceU. Water is loaded into the catholyte compartment, and the ion-exchange membrane separates the catholyte from the anolyte (see Electrochemical processing). [Pg.138]

Sepa.ra.tlon, Sodium carbonate (soda ash) is recovered from a brine by first contacting the brine with carbon dioxide to form sodium bicarbonate. Sodium bicarbonate has a lower solubiUty than sodium carbonate, and it can be readily crystallized. The primary function of crystallization in this process is separation a high percentage of sodium bicarbonate is soHdified in a form that makes subsequent separation of the crystals from the mother hquor economical. With the available pressure drop across filters that separate Hquid and soHd, the capacity of the process is determined by the rate at which hquor flows through the filter cake. That rate is set by the crystal size distribution produced in the crystallizer. [Pg.338]


See other pages where Sodium carbon dioxide process is mentioned: [Pg.171]    [Pg.342]    [Pg.7301]    [Pg.50]    [Pg.75]    [Pg.206]    [Pg.474]    [Pg.775]    [Pg.523]    [Pg.523]    [Pg.130]    [Pg.441]    [Pg.508]    [Pg.303]    [Pg.526]    [Pg.334]    [Pg.275]    [Pg.492]    [Pg.216]    [Pg.469]    [Pg.459]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Carbonation process

Carbonization process

Process carbonate

Sodium carbonate

Sodium carbonate, processes

Sodium dioxide

© 2024 chempedia.info