Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low-pressure steam

Figure 6.25a shows the same grand composite curve with two levels of saturated steam used as a hot utility. The steam system in Fig. 6.25a shows the low-pressure steam being desuperheated by injection of boiler feedwater after pressure reduction to maintain saturated conditions. Figure 6.256 shows again the same grand composite curve but with hot oil used as a hot utility. [Pg.186]

Following the pinch rules, there should be no heat transfer across either the process pinch or the utility pinch by process-to-process heat exchange. Also, there must be no use of inappropriate utilities. This means that above the utility pinch in Fig. 16.17a, high-pressure steam should be used and no low-pressure steam or cooling water. Between the utility pinch and the process pinch, low-pressure steam should be used and no high-pressure steam or cooling water. Below the process pinch in Fig. 16.17, only cooling water should be used. The appropriate utility streams have been included with the process streams in Fig. 16.17a. [Pg.381]

Given a network structure, it is possible to identify loops and paths for it, as discussed in Chap. 7. Within the context of optimization, it is only necessary to consider those paths which connect two different utilities. This could be a path from steam to cooling water or a path from high-pressure steam used as a hot utility to low-pressure steam also used as a hot utility. These paths between two different utilities will be designated utility paths. Loops and utility paths both provide degrees of freedom in the optimization. ... [Pg.390]

Exampie A.3.1 The pressures for three steam mains have been set to the conditions given in Table A.l. Medium- and low-pressure steam are generated by expanding high-pressure steam through a steam turbine with an isentropic efficiency of 80 percent. The cost of fuel is 4.00 GJ and the cost of electricity is 0.07 h. Boiler feedwater is available at 100°C with a heat capacity... [Pg.409]

The problem with this approach is that if the steam generated in the boilers is at a very high pressure and/or the ratio of power to fuel costs is high, then the value of low-pressure steam can be extremely low or even negative. This is not sensible and discourages efficient use of low-pressure steam, since it leads to low-pressure steam with a value considerably less than its fuel value. [Pg.411]

An alternative approach is to assume that the low-pressure steam... [Pg.411]

In this condenser, part of the stripper off-gases are condensed (the heat of condensation is used to generate low pressure steam). The carbamate formed and noncondensed NH and CO2 are put into the reactor bottom and conversion of the carbamate into urea takes place. The reactor is sized to allow enough residence time for the reaction to approach equiUbrium. The heat required for the urea reaction and for heating the solution is suppHed by additional condensation of NH and CO2. The reactor which is lined with 316 L stainless steel, contains sieve trays to provide good contact between the gas and Hquid phases and to prevent back-mixing. The stripper tubes are 25-22-2 stainless steel. Some strippers are still in service after almost 30 years of operation. [Pg.304]

The unit has virtually the same flow sheet (see Fig. 2) as that of methanol carbonylation to acetic acid (qv). Any water present in the methyl acetate feed is destroyed by recycle anhydride. Water impairs the catalyst. Carbonylation occurs in a sparged reactor, fitted with baffles to diminish entrainment of the catalyst-rich Hquid. Carbon monoxide is introduced at about 15—18 MPa from centrifugal, multistage compressors. Gaseous dimethyl ether from the reactor is recycled with the CO and occasional injections of methyl iodide and methyl acetate may be introduced. Near the end of the life of a catalyst charge, additional rhodium chloride, with or without a ligand, can be put into the system to increase anhydride production based on net noble metal introduced. The reaction is exothermic, thus no heat need be added and surplus heat can be recovered as low pressure steam. [Pg.77]

Humidification. For wiater operation, or for special process requirements, humidification maybe required (see Simultaneous HEAT and mass transfer). Humidification can be effected by an air washer which employs direct water sprays (see Evaporation). Regulation is maintained by cycling the water sprays or by temperature control of the air or water. Where a large humidification capacity is required, an ejector which direcdy mixes air and water in a no22le may be employed. Steam may be used to power the no22le. Live low pressure steam can also be released directly into the air stream. Capillary-type humidifiers employ wetted porous media to provide extended air and water contact. Pan-type humidifiers are employed where the required capacity is small. A water filled pan is located on one side of the air duct. The water is heated electrically or by steam. The use of steam, however, necessitates additional boiler feed water treatment and may add odors to the air stream. Direct use of steam for humidification also requires careful attention to indoor air quahty. [Pg.362]

This carbon dioxide-free solution is usually treated in an external, weU-agitated liming tank called a "prelimer." Then the ammonium chloride reacts with milk of lime and the resultant ammonia gas is vented back to the distiller. Hot calcium chloride solution, containing residual ammonia in the form of ammonium hydroxide, flows back to a lower section of the distiller. Low pressure steam sweeps practically all of the ammonia out of the limed solution. The final solution, known as "distiller waste," contains calcium chloride, unreacted sodium chloride, and excess lime. It is diluted by the condensed steam and the water in which the lime was conveyed to the reaction. Distiller waste also contains inert soHds brought in with the lime. In some plants, calcium chloride [10045-52-4], CaCl, is recovered from part of this solution. Close control of the distillation process is requited in order to thoroughly strip carbon dioxide, avoid waste of lime, and achieve nearly complete ammonia recovery. The hot (56°C) mixture of wet ammonia and carbon dioxide leaving the top of the distiller is cooled to remove water vapor before being sent back to the ammonia absorber. [Pg.523]

Dilute glycerol Hquors, after purification, are concentrated to cmde glycerol by evaporation. This process is carried out in conventional evaporation (qv) under vacuum heated by low pressure steam. In the case of soap—lye glycerol, means are suppHed for recovery of the salt that forms as the spent lye is concentrated. Multiple effort evaporators are typically used to conserve energy while concentrating to a glycerol content of 85—90%. [Pg.348]

Many units have waste heat recovery systems that generate low pressure steam from reaction heat. Such steam is often employed to drive adsorption refrigeration units to cool the reactor feed stream and to increase polymer conversion per pass, an energy-saving process that reduces the demand for electrical power. [Pg.373]

Cyclohexylamine is miscible with water, with which it forms an azeotrope (55.8% H2O) at 96.4°C, making it especially suitable for low pressure steam systems in which it acts as a protective film-former in addition to being a neutralizing amine. Nearly two-thirds of 1989 U.S. production of 5000 —6000 t/yr cyclohexylamine serviced this appHcation (69). Carbon dioxide corrosion is inhibited by deposition of nonwettable film on metal (70). In high pressure systems CHA is chemically more stable than morpholine [110-91-8] (71). A primary amine, CHA does not directiy generate nitrosamine upon nitrite exposure as does morpholine. CHA is used for corrosion inhibitor radiator alcohol solutions, also in paper- and metal-coating industries for moisture and oxidation protection. [Pg.212]

Some results of the constant-value pricing system are as foUow generation in a central unit at relatively low pressure, <4.24 MPa (600 psig) tremendous economic pressure to use turbines rather than motors for drives lack of incentive for high efficiency turbines excessively high temperature differentials in steam users tremendous incentive to recover waste heat as low pressure steam and a large plume of excess low pressure steam vented to the atmosphere. [Pg.92]

The low autoignition temperature of benzaldehyde (192°C) presents safety problems since benzaldehyde can be ignited by exposure to low pressure steam piping, for example. Benzaldehyde may also spontaneously ignite when soaked into rags or clothing or adsorbed onto activated carbon (13). [Pg.35]

Overall comparison between amine and carbonate at elevated pressures shows that the amine usually removes carbon dioxide to a lower concentration at a lower capital cost but requires more maintenance and heat. The impact of the higher heat requirement depends on the individual situation. In many appHcations, heat used for regeneration is from low temperature process gas, suitable only for boiler feed water heating or low pressure steam generation, and it may not be usefiil in the overall plant heat balance. [Pg.22]

Calcium Silicates. Cements aie hydiated at elevated tempeiatuies foi the commercial manufacture of concrete products. Using low pressure steam curing or hydrothermal treatment above 100°C at pressures above atmospheric, the products formed from calcium siUcates are often the same as the hydrates formed from their oxide constituents. Hence lime and siUca ate ftequendy used in various proportions with or without Portland cement in the manufacture of calcium siUcate hydrate products. Some of these compounds are Hsted in Table 6. [Pg.287]

Road and rail barrels are usually constmcted of stainless steel or lacquer-lined mild steel and may requite some provision for heating duriag cold weather. This is best achieved by submerged coils citculating hot water at about 40°C or low pressure steam, but care must be taken to ensure the surface temperature of the coils does not rise excessively otherwise discoloration of the product may occur. [Pg.44]

The suitabiHty and economics of a distillation separation depend on such factors as favorable vapor—Hquid equiHbria, feed composition, number of components to be separated, product purity requirements, the absolute pressure of the distillation, heat sensitivity, corrosivity, and continuous vs batch requirements. Distillation is somewhat energy-inefficient because in the usual case heat added at the base of the column is largely rejected overhead to an ambient sink. However, the source of energy for distillations is often low pressure steam which characteristically is in long supply and thus relatively inexpensive. Also, schemes have been devised for lowering the energy requirements of distillation and are described in many pubHcations (87). [Pg.175]

Fig. 51eft. Schematic flow diagram of an ethylene plant using naphtha feedstock. CW = cooling water QW = quench water QO = quench oil LPS = low pressure steam MPS = medium pressure steam SPS = super high pressure steam C3R = propylene refrigerant and... Fig. 51eft. Schematic flow diagram of an ethylene plant using naphtha feedstock. CW = cooling water QW = quench water QO = quench oil LPS = low pressure steam MPS = medium pressure steam SPS = super high pressure steam C3R = propylene refrigerant and...

See other pages where Low-pressure steam is mentioned: [Pg.174]    [Pg.187]    [Pg.323]    [Pg.381]    [Pg.382]    [Pg.383]    [Pg.384]    [Pg.385]    [Pg.385]    [Pg.408]    [Pg.413]    [Pg.305]    [Pg.361]    [Pg.442]    [Pg.447]    [Pg.52]    [Pg.495]    [Pg.422]    [Pg.190]    [Pg.78]    [Pg.365]    [Pg.5]    [Pg.94]    [Pg.238]    [Pg.480]    [Pg.25]    [Pg.337]    [Pg.478]    [Pg.21]    [Pg.439]    [Pg.476]   
See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.521 ]




SEARCH



Low pressure

Low-pressure superheated steam drying

Low-pressure superheated steam drying LPSSD)

Other Waterside Problems in Hot Water Heating and Low-Pressure Steam Systems

Pressurized steam

© 2024 chempedia.info