Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saturated fatty lauric acid

Fats and oils may be synthesized in enantiomerically pure forms in the laboratory (30) or derived from vegetable sources (mainly from nuts, beans, and seeds), animal depot fats, fish, or marine mammals. Oils obtained from other sources differ markedly in their fatty acid distribution. Table 2 shows compositions for a wide variety of oils. One variation in composition is the chain length of the fatty acid. Butterfat, for example, has a fairly high concentration of short- and medium-chain saturated fatty acids. Oils derived from cuphea are also a rich source of capric acid which is considered to be medium in chain length (32). Palm kernel and coconut oils are known as lauric oils because of their high content of C-12 saturated fatty acid (lauric acid). Rapeseed oil, on the other hand, has a fairly high concentration of long-chain (C-20 and C-22) fatty acids. [Pg.128]

Fatty acids, both saturated and unsaturated, have found a variety of applications. Brassilic acid (1,11-un-decanedicarboxylic acid [BA]), an important monomer used in many polymer applications, is prepared from erucic acid (Scheme 2), obtained from rapeseed and crambe abyssinica oils by ozonolysis and oxidative cleavage [127]. For example, an oligomer of BA with 1,3-butane diol-lauric acid system is an effective plasticizer for polyvinylchloride. Polyester-based polyurethane elastomers are prepared from BA by condensing with ethylene glycol-propylene glycol. Polyamides based on BA are known to impart moisture resistance. [Pg.419]

Most of the technically produced a-sulfo fatty esters are prepared from unbranched saturated fatty acid esters that are derived from 8 22 carboxylic acids and Cj-C3 alcohols. In particular the C12 (lauric), C14 (myristic), C16 (palmitic), and C18 (stearic) acids are interesting because the ester sulfonates... [Pg.467]

The traditional major source for the nonionic surfactant industry is fatty acid triglycerides from both animal and vegetable sources as the saturated or unsaturated acids. The saturated acids include lauric acid (w-dodecanoic), myristic acid (n-tetradecanoic), palmitic acid ( -hexadecanoic),and stearic acid (n-octadecanoic). The unsaturated acids include oleic acid (Z-9-octadecenoic) and linoleic acid (Z,Z-9,12-octadecadienoic). Of the 200 non-ionic surfactants... [Pg.51]

Butyric acid is one of the simplest fatty acids. Fatty acids, which are the building units of fats and oils, are natural compounds of carbon chains with a carboxyl group (-COOH) at one end. Most natural fatty acids have an unbranched carbon chain and contain an even number of carbon atoms because during biosynthesis they are built in two carbon units from acetyl coenzyme A (CoA). Butyric acid is an unsaturated fatty acid, which means all carbon-carbon bonds are single bonds. Common names for fatty acids stem from their natural sources. In addition to butyric acid, some other common saturated fatty acids include lauric acid, palmitic acid, and stearic acid. Lauric acid was first discovered in Lauraceae (Laurus nobilis) seeds, palmitic oil was prepared from palm oil, and stearic acid was discovered in animal fat and gets its name from the Greek word stear for tallow. [Pg.52]

It is important to bear in mind when discussing the effect of dairy fat in association to heart disease that dairy products contain many different saturated fatty acids that do not exert the same biological response in terms of, for example, cholesterol levels. The saturated fatty acids in milk fat include shorter and medium chain fatty acids (2 0-10 0), lauric acid (12 0), myristic acid (14 0), palmitic acid (16 0), and stearic acid (18 0). Other fatty acids in milk fat are oleic acid (18 1) and linoleic acid (18 2n-6) as indicated in Table 1.2. [Pg.19]

Soaps Short-chain saturated fatty acids, particularly C12 (lauric) from coconut, are used in cosmetic soap manufacture. Though there has been interest in developing Cuphea species as a source of C12 fatty acids in temperate northern latitudes, it has proved difficult to commercialise to date. [Pg.27]

Palmitic and stearic acids are the major saturated fatty acid constituents of most animal and plant tissues. Much smaller amounts of other saturated fatty acids are present in most natural sources. Low concentrations of myristic acid (n-tetradecanoic acid 14 0) and lauric acid (n-dodecanoic acid 12 0) have been detected in certain tissues. [Pg.6]

The temperature optimum for interesterification is 85°C or higher, and the half-life in continuous acidolysis of spy bean oil with lauric acid at 60°C is above 2500 h. The non-specificity makes the catalyst useful in random interesterification of different fats. The catalyst has some saturated fatty acid specificity. Two lipase components (A and B) were purified. Lipase A is important for interesterification, and Lipase B is important in ester synthesis. [Pg.157]

It is seen that Lipase A has a marked preference for lauric acid compared to oleic acid. As Lipase B has a very lew acidolytic activity, it can be assumed that Lipase A is responsible for the specificity towards saturated fatty acids observed for the crude enzyme. [Pg.169]

The main fatty acid component of the triacylglycerols in coconut oil is lauric acid, CH3(CH2)ioCOOH. Explain why coconut oil is a liquid at room temperature even though it contains a large fraction of this saturated fatty acid. [Pg.1122]

It is now known that not all saturated fatty acids are equally hypercholesterole-mic. For example, medium-chain saturated fatty acids of carbon length 8-10, as well as stearic acid (18 0), have little or no effect on serum cholesterol concentrations. In contrast, evidence indicates that palmitic acid (16 0), the principle fatty acid in most diets, can increase serum cholesterol concentrations in humans. However, in normocholesterolemic humans, dietary palmitic and oleic acids have been shown to exert similar effects on serum cholesterol, suggesting that only humans or animal species sensitive to dietary cholesterol and selected fats ( hyperresponders ) may exhibit significant changes in semm cholesterol in response to dietary fat intake. Myristic acid (14 0) and, to a lesser extent, lauric acid (12 0), which are relatively high in coconut oil, both can raise serum cholesterol and LDL-cholesterol levels. Overall, it is not clear why humans respond so differently to cholesterol or... [Pg.631]

Saturated fatty acids. The adverse effect of saturated fat on blood cholesterol level and its implication in cardiovascular disease has stimulated concern over the level of saturated fatty acids in the diet. Canola oil contains a very low level (<7%) of saturated fatty acids about half the level present in corn oil, olive oil, or soybean oil and about one-quarter the level present in cottonseed oil. Furthermore, canola oil contains only 4% of the saturated fatty acids (viz., lauric, myristic, and palmitic) that have been found to increase blood cholesterol level. Hence, canola oil fits well with the recommendation to reduce the amount of saturated fat in the diet. [Pg.736]

As previously mentioned, the triglycerides found in biomass are esters of the triol, glycerol, and fatty acids (Fig. 3.6). These water-insoluble, oil-soluble esters are common in many biomass species, especially the oilseed crops, but the concentrations are small compared to those of the polysaccharides and lignins. Many saturated fatty acids have been identified as constituents of the lipids. Surprisingly, almost all the fatty acids that have been found in natural lipids are straight-chain acids containing an even number of carbon atoms. Most lipids in biomass are esters of two or three fatty acids, the most common of which are lauric (Cn), myristic (Cu), palmitic (Cia), oleic (Cis), and linoleic (Cis) acids. Palmitic acid is of widest occurrence and is the major constituent (35 to 45%) of the fatty acids of palm oil. Lauric acid is the most abundant fatty acid of palm-kemel oil (52%), coconut oil (48%), and babassu nut oil (46%). The monounsaturated oleic acid and polyunsaturated linoleic acid comprise about 90% of sunflower oil fatty acids. Linoleic acid is the dominant fatty acid in com oil (55%), soybean oil (53%), and safflower oil (75%). Saturated fatty acids of 18 or more carbon atoms are widely distributed, but are usually present in biomass only in trace amounts, except in waxes. [Pg.85]

Diets rich in saturated fat provoke an increase in LDL-cholesterol, increase TGs, and lower HDL-cholesterol — these diets worsen all three risk factors. This statement applies to the saturated fatty acids 12 0 (lauric acid), 14 0 (myristic acid), and 16 0 (palmitic acid). In realizing the tendency of these three fatty acids to provoke cardiovascular disease, a question often asked is, "Should we replace the saturated fats in the diet with other saturated fatty acids (such as stearic acid 18 0), with fats containing monoimsaturated fatty acids (such as oleic acid 18 1), with fats con-... [Pg.364]

Laurie acid is a fatty carboxylic acid isolated from vegetable and animal fats or oils. For example, coconut oil and palm kernel oil both contain high proportions of lauric acid. Isolation from natural fats and oils involves hydrolysis, separation of the fatty acids, hydrogenation to convert unsaturated fatty acids to saturated acids, and finally distillation of the specific fatty acid of interest. [Pg.406]

This compound is the zinc salt of a mixture of fatty acids, predominantly lauric acid, which is one of the three most widely distributed saturated fatty acids found in nature (coconut and palm oils). Consequently, no hazardous environmental impact is expected. [Pg.260]

The major fatty acids in PKO are Cn (lauric acid) at about 48%, Cm (myristic acid) at about 16% and 18 1 (oleic acid) at about 15% (Codex 2001). No other fatty acid is present at more than 10%. The heavy preponderance of a single saturated fatty acid, combined with low levels of unsaturation, gives the oil its steep melting profile. [Pg.175]

A useful convention is to denote fatty acids by the number of carbon atoms and the number of C=C bonds. For example, lauric acid, which has 12 carbon atoms and no C=C bonds, is C12 0. This nomenclature does not specify the position of the C=C bonds, nor whether they are cis or trans. All fats are mixtures of triglycerides (and hence contain a number of different fatty acid residues). The approximate fatty acid composition of some fats is shown in Table 3.4. Butterfat contains a much wider range of fatty acids than the vegetable fats. Coconut oil contains very high levels of saturated fatty acids, particularly lauric acid. [Pg.47]


See other pages where Saturated fatty lauric acid is mentioned: [Pg.78]    [Pg.220]    [Pg.9]    [Pg.27]    [Pg.83]    [Pg.119]    [Pg.53]    [Pg.131]    [Pg.250]    [Pg.267]    [Pg.241]    [Pg.40]    [Pg.83]    [Pg.1629]    [Pg.477]    [Pg.883]    [Pg.273]    [Pg.628]    [Pg.830]    [Pg.1052]    [Pg.2032]    [Pg.2315]    [Pg.1624]    [Pg.173]    [Pg.106]    [Pg.282]    [Pg.438]    [Pg.460]    [Pg.132]    [Pg.537]    [Pg.538]    [Pg.221]   
See also in sourсe #XX -- [ Pg.36 , Pg.268 ]




SEARCH



Fatty acid saturation

Fatty acids saturated

Lauric

Lauric acid

Saturated acids

© 2024 chempedia.info