Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyunsaturates linoleate

As previously mentioned, the triglycerides found in biomass are esters of the triol, glycerol, and fatty acids (Fig. 3.6). These water-insoluble, oil-soluble esters are common in many biomass species, especially the oilseed crops, but the concentrations are small compared to those of the polysaccharides and lignins. Many saturated fatty acids have been identified as constituents of the lipids. Surprisingly, almost all the fatty acids that have been found in natural lipids are straight-chain acids containing an even number of carbon atoms. Most lipids in biomass are esters of two or three fatty acids, the most common of which are lauric (Cn), myristic (Cu), palmitic (Cia), oleic (Cis), and linoleic (Cis) acids. Palmitic acid is of widest occurrence and is the major constituent (35 to 45%) of the fatty acids of palm oil. Lauric acid is the most abundant fatty acid of palm-kemel oil (52%), coconut oil (48%), and babassu nut oil (46%). The monounsaturated oleic acid and polyunsaturated linoleic acid comprise about 90% of sunflower oil fatty acids. Linoleic acid is the dominant fatty acid in com oil (55%), soybean oil (53%), and safflower oil (75%). Saturated fatty acids of 18 or more carbon atoms are widely distributed, but are usually present in biomass only in trace amounts, except in waxes. [Pg.85]

The hypothesis that HTPLO and SLO were able to mediate the N-demethyl-ation of selected phenothiazines and insecticides in the presence of polyunsaturated linoleic acid (LA) was proposed by Hover and Kulkarni [163]. This N-demethylation reaction might be limited by the incubation time, pH of the medium and concentration of the enzyme and substrate. The reaction was followed by measuring the formaldehyde production. The results confirmed that the polyunsaturated free fatty acids could support the N-demethylation of xenobiotics via the lipoxygenase pathway. [Pg.210]

Fig. 4.26 18-carbon fatty acids Saturated stearic acid with no double bonds, monounsaturated oleic acid with one, and polyunsaturated linoleic acid with two. Each kink is a carbon atom... [Pg.104]

Fatty acids with one double bond are referred to as monounsaturated molecules. When two or more double bonds occur in fatty acids, usually separated by methylene groups (—CH2—), they are referred to as polyunsaturated. The monounsaturated fatty acid oleic acid (18 1A9) and the polyunsaturated linoleic acid (18 2A9,12) are among the most abundant fatty acids in living organisms. [Pg.336]

Fig. 2.20 Chemical structures of saturated stearic acid, monounsatuiated oleic acid (to-9), and polyunsaturated linoleic (q>-6), a-linolenic (co-3), eicosapentaenoic (q)-3), and docosahexaenoic (co-3) acids. (Authors own work)... Fig. 2.20 Chemical structures of saturated stearic acid, monounsatuiated oleic acid (to-9), and polyunsaturated linoleic (q>-6), a-linolenic (co-3), eicosapentaenoic (q)-3), and docosahexaenoic (co-3) acids. (Authors own work)...
Microsomal (0-6 desaturases use cytochrome b5 as electron donor to introduce a double bond into the co-6 position of monounsaturated oleic acid to produce polyunsaturated linoleic acid. Thus microsomal -6 desaturases play a vital role in the polyunsaturated fatty acid synthesis in angiosperms. It has been estimated that these enzymes are responsible for more than 90% of the polyunsaturated fatty acid synthesis in non-photosynthetic tissues and developing seeds of oil crops (1). [Pg.383]

The hydrogenation process has, therefore, become popularly known as fat hardening. It converts oils to solids, with convenient softening points, that resist oxidation and contain polyunsaturated linoleic esters that are felt to be nutritionally useful. Most fats can be synthesized in the body, except for those containing linoleic and linolenic acids, so these are the essential fatty acids that must be provided with food. [Pg.93]

Once fatty acids have been made de novo they can either be modified by elongation (above), by desaturation or by other reactions. Desaturation usually takes place by an aerobic mechanism - an exception being in the E. coli fatty acid synthetase. Aerobic desaturases differ from each other by the nature of the acyl substrate they use, the type of reduced cofactor and the position at which the double bond is introduced into the acyl chain. Particularly notable are the desaturases which produce the polyunsaturated linoleic and a-linolenic acids. These enzymes use complex lipid substrates rather than acyl-thioesters. [Pg.116]

Homogeneous and heterogenous catalysts which selectively or partially hydrogenate fatty amines have been developed (50). Selective hydrogenation of cis and trans isomers, and partial hydrogenation of polyunsaturated moieties, such as linoleic and linolenic to oleic, is possible. [Pg.220]

The polyunsaturated aliphatic monocarboxyhc acids having industrial significance include sorbic, linoleic, linolenic, eleostearic, and various polyunsaturated fish acids (Table 3). Of these, only sorbic acid (qv) is made synthetically. The other acids, except those from tall oil, occur naturally as glycerides and are used mosdy in this form. [Pg.80]

Lipoxygenase-Catalyzed Oxidations. Lipoxygenase-1 catalyzes the incorporation of dioxygen into polyunsaturated fatty acids possessing a l(Z),4(Z)-pentadienyi moiety to yield ( ),(Z)-conjugated hydroperoxides. A highly active preparation of the enzyme from soybean is commercially available in purified form. From a practical standpoint it is important to mention that the substrate does not need to be in solution to undergo the oxidation. Indeed, the treatment of 28 g/L of linoleic acid [60-33-3] with 2 mg of the enzyme results in (135)-hydroperoxide of linoleic acid in 80% yield... [Pg.349]

Polyunsaturated fatty acids pose a slightly more complicated situation for the cell. Consider, for example, the case of linoleic acid shown in Figure 24.24. As with oleic acid, /3-oxidation proceeds through three cycles, and enoyl-CoA isomerase converts the cA-A double bond to a trans-b double bond to permit one more round of /3-oxidation. What results this time, however, is a cA-A enoyl-CoA, which is converted normally by acyl-CoA dehydrogenase to a trans-b, cis-b species. This, however, is a poor substrate for the enoyl-CoA hydratase. This problem is solved by 2,4-dienoyl-CoA reductase, the product of which depends on the organism. The mammalian form of this enzyme produces a trans-b enoyl product, as shown in Figure 24.24, which can be converted by an enoyl-CoA isomerase to the trans-b enoyl-CoA, which can then proceed normally through the /3-oxidation pathway. Escherichia coli possesses a... [Pg.794]

FIGURE 24.24 The oxidation pathway for polyunsaturated fatty adds, illustrated for linoleic add. Three cycles of /3-oxidation on linoleoyl-CoA yield the cis-A, d.s-A intermediate, which is converted to a tran.s-A, cis-A intermediate. An additional round of /S-oxi-dation gives d.s-A enoyl-CoA, which is oxidized to the trans-A, d.s-A species by acyl-CoA dehydrogenase. The subsequent action of 2,4-dienoyl-CoA reductase yields the trans-A product, which is converted by enoyl-CoA isomerase to the tran.s-A form. Normal /S-oxida-tion then produces five molecules of acetyl-CoA. [Pg.795]

Organisms differ with respect to formation, processing, and utilization of polyunsaturated fatty acids. E. coli, for example, does not have any polyunsaturated fatty acids. Eukaryotes do synthesize a variety of polyunsaturated fatty acids, certain organisms more than others. For example, plants manufacture double bonds between the A and the methyl end of the chain, but mammals cannot. Plants readily desaturate oleic acid at the 12-position (to give linoleic acid) or at both the 12- and 15-positions (producing linolenic acid). Mammals require polyunsaturated fatty acids, but must acquire them in their diet. As such, they are referred to as essential fatty acids. On the other hand, mammals can introduce double bonds between the double bond at the 8- or 9-posi-tion and the carboxyl group. Enzyme complexes in the endoplasmic reticulum desaturate the 5-position, provided a double bond exists at the 8-position, and form a double bond at the 6-position if one already exists at the 9-position. Thus, oleate can be unsaturated at the 6,7-position to give an 18 2 d5-A ,A fatty acid. [Pg.816]

More than LOO different fatty acids are known, and about 40 occur widely. Palmitic acid (C ) and stearic acid (Cjy) are the most abundant saturated fatty adds oleic and linoleic acids (both Care the most abundant unsaturated ones. Oleic acid is monounsaturated since it has only one double bond, whereas linoleic, linolenic, and arachidonic acids are polyunsaturated fatty acids because they have more than one double bond. Linoleic and linolenic... [Pg.1061]

Gonjugation of polyunsaturated fats Methyl linoleate with tris(triphenylphosphine) chlororhodium. J.Am. Oil Chem. Soc., 48, 21-24. [Pg.186]

Figure 1.7 Typical zero-order and corresponding second-derivative electronic absorption spectra of ethanol-reconstituted lipid/chloroform extracts of autoxidized model polyunsaturated fatty-acid compounds and inflammatory synovial fluid obtained after (1) reduction with NaBH4 and (2) dehydration with alcoholic H2S04- (a) Methyl linoleate subsequent to autoxidation in air at ambient temperature for a period of 72 h (—), or exposure to a Fenton reaction system containing EDTA (5.75 x 10 mol/dm ), H2O2 (1.14 X 10 mol/dm ) and Fe(ll) (5.75 x IO mol/dm ) as an aqueous suspension (—) (b) as (a) but with methyl linolenate (c) untreated rheumatoid knee-joint synovial fluid. Figure 1.7 Typical zero-order and corresponding second-derivative electronic absorption spectra of ethanol-reconstituted lipid/chloroform extracts of autoxidized model polyunsaturated fatty-acid compounds and inflammatory synovial fluid obtained after (1) reduction with NaBH4 and (2) dehydration with alcoholic H2S04- (a) Methyl linoleate subsequent to autoxidation in air at ambient temperature for a period of 72 h (—), or exposure to a Fenton reaction system containing EDTA (5.75 x 10 mol/dm ), H2O2 (1.14 X 10 mol/dm ) and Fe(ll) (5.75 x IO mol/dm ) as an aqueous suspension (—) (b) as (a) but with methyl linolenate (c) untreated rheumatoid knee-joint synovial fluid.
Reaction yields depend on the nature of the substrate. Linseed oil contains two polyunsaturated fatty acids 50% linolenic acid and 18% linoleic acid. The corresponding hydroperoxides are obtained with low yields. [Pg.576]

As mentioned earlier, both MCTs and LCTs are used in tube feeding products. Corn, soy, and safflower oils have been the mainstay sources of fat in these products, providing mainly co-6 polyunsaturated fatty acids (PUFAs). On the other hand, some newer EN products contain higher quantities of co-3 PUFAs from sources such as fish oil [i.e., docosahexenoic acid (DHA) and eicosapentenoic acid or (EPA)]. Still other formulas contain higher quantities of monounsaturated fatty acids from canola oil and high-oleic safflower or sunflower oils. The essential fatty acid (EFA) content (mainly linoleic acid) of EN... [Pg.1518]

Biosynthesis of triene pheromone components with a triene double bond system that is n-3 (3,6,9-) are probably produced from linolenic acid [49]. Moths in the families Geometridae, Arctiidae, and Noctuidae apparently utilize linoleic and linolenic acid as precursors for their pheromones that must be obtained in the diet,since moths can not synthesize these fatty acids [50]. Most of the Type II pheromones are produced by chain elongation and decarboxylation to form hydrocarbons [51]. Oxygen is added to one of the double bonds in the polyunsaturated hydrocarbon to produce an epoxide [49]. [Pg.109]

Most moth sex pheromones that are straight chain hydrocarbons also usually have an odd number of carbons. Most of these are polyunsaturated with double bonds in the 3,6,9- or 6,9-positions, indicating that they are derived from linolenic or linoleic acid, respectively [49,51]. Iinolenic and linoleic acid cannot be biosynthesized by moths so they must be obtained from the diet [75]. A few even chain-length hydrocarbon sex pheromones have been identified that also have 3,6,9- or 6,9-double bond configurations [49], indicating they too are derived from linolenic or linoleic acids however, it is not known how these even chain hydrocarbons are formed. [Pg.112]

The biosynthetic origin of the depolymerization-resistant core of cutin (cutan) remains to be established. The early observation that linoleic acid and linolenic acid were preferentially incorporated into the non-depolymerizable core of cutin in apple skin slices suggested that the ether-linked or C-C-linked core might arise preferentially from the czs-l,4-pentadiene system [31]. The insoluble residue, that contained the label from the incorporated polyunsaturated C18 acids, released the label upon treatment with HI, supporting the notion that some of those aliphatic chains were held together by ether bonds. More recently,... [Pg.24]

Linoleic acid is a polyunsaturated fatty acid (compound containing two or more double bonds) occurs as an ester in polyunsaturated fats. [Pg.396]


See other pages where Polyunsaturates linoleate is mentioned: [Pg.241]    [Pg.483]    [Pg.185]    [Pg.241]    [Pg.50]    [Pg.105]    [Pg.390]    [Pg.319]    [Pg.753]    [Pg.88]    [Pg.23]    [Pg.2]    [Pg.380]    [Pg.241]    [Pg.483]    [Pg.185]    [Pg.241]    [Pg.50]    [Pg.105]    [Pg.390]    [Pg.319]    [Pg.753]    [Pg.88]    [Pg.23]    [Pg.2]    [Pg.380]    [Pg.122]    [Pg.129]    [Pg.135]    [Pg.34]    [Pg.148]    [Pg.1080]    [Pg.113]    [Pg.308]    [Pg.390]    [Pg.261]    [Pg.25]    [Pg.27]    [Pg.98]   


SEARCH



Polyunsaturated

© 2024 chempedia.info