Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monomers used

B.p. — 29X. Monomer used to form polymers (only under rather drastic conditions) or copolymers with C2F4 and vinylidene fluoride, CH2 = CF2. Hexafluoropropene may be prepared by thermal decomposition of CF3CF2CF2C02Na or is prepared commercially by low pressure pyrolysis of C2F4. [Pg.203]

The monomers used are second generation petrochemical products. The polymethacrylates are in fact copolymers based on methyl methacrylate and up to C20 molecular weight alcohol methacrylate. The properties of the additive are controlled based on the molecular ratio of these different monomers and their molecular weight. [Pg.356]

In general, one finds that if the monomer uses CSFs that are K-fold excited relative to its dominant CSF to achieve an accurate description of its electron correlation, a size-extensive variational calculation on the dimer will require the inclusion of CSFs that are 2K-fold excited relative to the dimer s dominant CSF. To perform a size-extensive... [Pg.488]

Polylmethyl Methacrylate). The monomer used for poly(methyl methacrylate), 2-hy-droxy-2-methylpropanenitrile, is prepared by the following reaction ... [Pg.1012]

Poly (methyl Acrylate). The monomer used for preparing poly(methyl acrylate) is produced by the oxidation of propylene. The resin is made by free-radical polymerization initiated by peroxide or azo catalysts and has the following formula ... [Pg.1013]

The monomer used for preparing melamine formaldehyde is formed as follows ... [Pg.1017]

On the basis of these observations, criticize or defend the following proposition Regardless of the monomer used, zero-order Markov (Bernoulli) statistics apply to all free radical, anionic, and cationic polymerizations, but not to Ziegler-Natta catalyzed systems. [Pg.502]

The yield of acetone from the cumene/phenol process is beUeved to average 94%. By-products include significant amounts of a-methylstyrene [98-83-9] and acetophenone [98-86-2] as well as small amounts of hydroxyacetone [116-09-6] and mesityl oxide [141-79-7]. By-product yields vary with the producer. The a-methylstyrene may be hydrogenated to cumene for recycle or recovered for monomer use. Yields of phenol and acetone decline by 3.5—5.5% when the a-methylstyrene is not recycled (21). [Pg.96]

Small amounts of specially functionalized monomers are often copolymerized with acryUc monomers in order to modify or improve the properties of the polymer. These functional monomers can bring about improvements either directiy or by providing sites for further reaction with metal ions, cross-linkers, or other compounds and resins. Table 9 Hsts some of the more common functional monomers used in the preparation of acryUc copolymers. [Pg.166]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Fig. 1. Functional monomers used in acrylamide copolymers. Methacrylamidopropyltrim ethyl ammonium chloride [51410-72-1] (1), acryloyloxyethyltrimethylammonium chioride [44992-01-0] (2), methacryloyloxyethyltrimethylammonium chloride [50339-78-1] (3), /V,/V-dimethy1aminoethy1 methacrylate [2867-47-2] (4), /V,/V-dimethylaminopropy1 acryl amide [3845-76-9] (5), diallyl dimethyl amm onium chloride... Fig. 1. Functional monomers used in acrylamide copolymers. Methacrylamidopropyltrim ethyl ammonium chloride [51410-72-1] (1), acryloyloxyethyltrimethylammonium chioride [44992-01-0] (2), methacryloyloxyethyltrimethylammonium chloride [50339-78-1] (3), /V,/V-dimethy1aminoethy1 methacrylate [2867-47-2] (4), /V,/V-dimethylaminopropy1 acryl amide [3845-76-9] (5), diallyl dimethyl amm onium chloride...
DUactide (5) exists as three stereoisomers, depending on the configurations of the lactic acid monomer used. The enantiomeric forms whereia the methyl groups are cis are formed from two identical lactic acid molecules, D- or L-, whereas the dilactide formed from a racemic mixture of lactic acid is the opticaUy iaactive meso form, with methyl groups trans. The physical properties of the enantiomeric dilactide differ from those of the meso form (6), as do the properties of the polymers and copolymers produced from the respective dilactide (23,24). [Pg.512]

Ketone Peroxides. These materials are mixtures of compounds with hydroperoxy groups and are composed primarily of the two stmctures shown in Table 2. Ketone peroxides are marketed as solutions in inert solvents such as dimethyl phthalate. They are primarily employed in room-temperature-initiated curing of unsaturated polyester resin compositions (usually containing styrene monomer) using transition-metal promoters such as cobalt naphthenate. Ketone peroxides contain the hydroperoxy (—OOH) group and thus are susceptible to the same ha2ards as hydroperoxides. [Pg.228]

Vinyl acetate is another monomer used in latex manufacture for architectural coatings. When copolymerized with butyl acrylate, it provides a good balance of cost and performance. The interior flat latex paint market in North America is almost completely dominated by vinyl acetate—acryHc copolymers. Vinyl acetate copolymers are typicaHy more hydrophilic than aH-acryHc polymers and do not have the same ultraviolet light resistance as acryHcs as a result. [Pg.540]

Divinylbenzene. This is a specialty monomer used primarily to make cross-linked polystyrene resins. Pure divinylbenzene (DVB) monomer is highly reactive polymericaHy and is impractical to produce and store. Commercial DVB monomer (76—79) is generally manufactured and suppHed as mixtures of m- and -divinylbenzenes and ethylvinylbenzenes. DVB products are designated by commercial grades in accordance with the divinylbenzene content. Physical properties of DVB-22 and DVB-55 are shown in Table 10. Typical analyses of DVB-22 and DVB-55 are shown in Table 11. Divinylbenzene [1321 -74-0] is readily polymerized to give britde insoluble polymers even at ambient temperatures. The product is heavily inhibited with TBC and sulfur to minimize polymerization and oxidation. [Pg.489]

High heat ABS resins are produced by adding a third monomer to the styrene and acrylonitrile to stiffen the polymer backbone, thus raising the T. Two monomers used commercially for this purpose are a-methylstyrene (85) and /V-pheny1ma1eimide (86). [Pg.509]

Diethylene glycol bis (chloroformate) [106-75-2] is the starting material for diethylene glycol bis(allyl carbonate) [142-22-3] CR-39, or Nouryset 200, monomer, used in the manufacture of break-resistant optical lenses, which is obtained by the reaction with aHyl alcohol [107-18-6] (59). Alternatively, it can be obtained from aHyl chloroformate [2937-50-0] and diethylene glycol (60) (see Allylmonomers and polymers). [Pg.41]

Donation of a proton to the reactant often forms a carbenium ion or an oxonium ion, which then reacts ia the catalytic cycle. For example, a catalytic cycle suggested for the conversion of phenol and acetone iato bisphenol A, which is an important monomer used to manufacture epoxy resias and polycarbonates, ia an aqueous mineral acid solution is shown ia Figure 1 (10). [Pg.162]

In the EPDM polymerization, the double bond of the bicycloheptene ring system of ENB is involved. The amount of third monomers used in any polymerization varies, but it is usually present at less than 10 wt% of the finished polymer. [Pg.434]

The idea of using polyunsaturated monomers is rooted in the eady history of acryUc elastomers. The first monomers used were butadiene [106-99-0] (35), isoprene [78-79-5] (36), and aHyl maleate [999-21-3] (37), but they did not find commercial success because during polymerization large portions of polymer were cross-linked. Other monomers have been proposed more recentiy tetrahydrobenzyl acrylate (38), dicyclopentenyl acrylate [2542-30-2] (39), and 5-ethyhdene-2-norbomene [16219-75-3] (40). The market potential, at least for the more recent ones, is stiU to be determined. [Pg.476]

Table 11.17 Principal diene monomers used in manufacture... Table 11.17 Principal diene monomers used in manufacture...
As already mentioned in previous sections ethylene may also be copolymerised with several non-hydrocarbon polymers. Some of these copolymers are elastomeric and they also have a measure of oil resistance. Two monomers used commercially are vinyl acetate and, the structurally very similar, methyl acrylate ... [Pg.301]

Interestingly, later grades of Vamac to become available did not employ the cure site monomer, using instead a peroxide-curing system. Some of these copolymers also contained higher levels of methyl acrylate (up to 69%) to enhance the oil resistance. [Pg.301]

The first methacrylic esters were prepared by dehydration of hydroxyisobutyric esters, prohibitively expensive starting points for commercial synthesis. In 1932 J. W. C. Crawford discovered a new route to the monomer using cheap and readily available chemicals—acetone, hydrocyanic acid, methanol and sulphuric acid— and it is his process which has been used, with minor modifications, throughout the world. Sheet poly(methyl methacrylate) became prominent during World War II for aircraft glazing, a use predicted by Hill in his early patents, and since then has found other applications in many fields. [Pg.399]

As with other major plastics materials, there is at present little use of the lUPAC systematic nomenclature, which is based on the nature of the repeating unit rather than the monomer used. The following names may, however, be noted ... [Pg.399]

The successful development of eye contact lenses led in turn to a demand for soft contact lenses. Such a demand was eventually met by the preparation of copolymers using a combination of an acrylic ester monomer such as methyl methacrylate, a cross-linkable monomer such as a dimethacrylate, and a monomer whose homopolymer is soluble or highly swollen in water such as N-vinyl pyrrolidone. Such copolymers swell in water (hence the term hydrophilic), the degree of swelling being controlled by the specific type and amount of the monomers used. In use the lens is swollen to equilibrium in water, a typical soft lens having a water content of about 75%. [Pg.420]

This technology has been utilized by BP Chemicals for the production of lubricating oils with well defined characteristics (for example, pour point and viscosity index). It is used in conjunction with a mixture of olefins (i.e., different isomers and different chain length olefins) to produce lubricating oils of higher viscosity than obtainable by conventional catalysis [33]. Unichema Chemie BV have applied these principals to more complex monomers, using them with unsaturated fatty acids to create a mixture of products [34]. [Pg.323]

The use of other heterocyclic rings in displacement polymerization has been recently reported. Table 3 shows the new dihalo heterocyclic monomers used for synthesis of poly(aryl ethers). [Pg.39]


See other pages where Monomers used is mentioned: [Pg.728]    [Pg.370]    [Pg.279]    [Pg.328]    [Pg.469]    [Pg.27]    [Pg.270]    [Pg.125]    [Pg.210]    [Pg.314]    [Pg.229]    [Pg.350]    [Pg.464]    [Pg.18]    [Pg.189]    [Pg.557]    [Pg.18]    [Pg.205]    [Pg.510]    [Pg.716]    [Pg.1021]    [Pg.205]   
See also in sourсe #XX -- [ Pg.150 ]

See also in sourсe #XX -- [ Pg.185 , Pg.186 ]




SEARCH



Distribution monomer unit, simulation using

Factors Affecting the use of Recycled Monomers or Oligomers

Monomer thermal polymerization using cure

Monomers and oligomers used in degradable polyurethanes

Monomers used for polymerization

Monomers used photocuring

Poly synthesis using pure monomer

Polymerization of a Monomer Using Charged or Functionalized Fullerenes as Initiators

Radical polymerization monomers used

Reduction of Residual Monomer in Latex Products Using High-Pressure Carbon Dioxide

The Use of Monomers and Initiators

Use of Multifunctional Monomers

© 2024 chempedia.info