Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vegetables oil from

Prostaglandins arise from unsaturated C20 carboxylic acids such as arachidonic acid (see Table 26 1) Mammals cannot biosynthesize arachidonic acid directly They obtain Imoleic acid (Table 26 1) from vegetable oils m their diet and extend the car bon chain of Imoleic acid from 18 to 20 carbons while introducing two more double bonds Lmoleic acid is said to be an essential fatty acid, forming part of the dietary requirement of mammals Animals fed on diets that are deficient m Imoleic acid grow poorly and suffer a number of other disorders some of which are reversed on feed mg them vegetable oils rich m Imoleic acid and other polyunsaturated fatty acids One function of these substances is to provide the raw materials for prostaglandin biosynthesis... [Pg.1080]

Vitamins. The preparation of heat-sensitive natural and synthetic vitamins (qv) involves solvent extraction. Natural vitamins A and D are extracted from fish Hver oils and vitamin E from vegetable oils (qv) Hquid propane [74-98-6] is the solvent. In the synthetic processes for vitamins A, B, C, and E, solvent extraction is generally used either in the separation steps for intermediates or in the final purification. [Pg.79]

Table 7. Commercial Lecithin Potential from Vegetable Oils... Table 7. Commercial Lecithin Potential from Vegetable Oils...
To improve processing and to plasticize the mbber compound, numerous processing agents have been used over the years, eg, petroleum and ester plasticizers, resins and tars, Hquid mbber peptizers, peptizers, fatty acids and derivatives from vegetable oils, and polyethylene and hydrocarbon waxes. [Pg.245]

This is not the case in most fires where some oi the intermediate produces, formed when large, complex molecules are broken up, persist. Examples are hydrogen cyanide from wool and silk, acrolein from vegetable oils, acetic acid from timber or paper, and carbon or carbon monoxide from the incomplete combustion of carbonaceous materials. As the fire develops and becomes hotter, many of these intermediates, which are often toxic, are destroyed—for example, hydrogen cyanide is decomposed at about 538°C (1000°F). [Pg.2314]

Biodiesel is diesel fuel produced from vegetable oils and other renewable resources. Many different types of oils can he used, including animal fats, used cooking oils, and soybean oil. Biodiesel is miscible with petroleum diesels and can he used in biodiesel-diesel blends. Most often blends are 20 percent biodiesel and 80 percent traditional diesel. Soy diesel can be used neat (100%), hut many other types of biodiesel are too viscous, especially in winter, and must be used in blends to remain fluid. The properties of the fuel will vaiy depending on the raw material used. Typical values for biodiesel are shown in Table 1. [Pg.162]

These comprise a large group because almost any acid can be reacted with almost any alcohol to produce an ester which might be suitable as a coating resin. The distinction between an alkyd and a polyester is that the former contains monobasic acids usually derived from vegetable oils such as linseed, soyabean or coconut while the latter do not. [Pg.674]

The typical alkyd resin (see above) is eomprised of three basic components an aromatic diacid such as phthalic anhydride which together with a polyol such as glycerol, forms the backbone of the resin molecule and along which are distributed the fatty acids derived from vegetable oils. The solubility, film hardness and colour of alkyd resins depend on the nature of the modifying fatty acid which in most cases contributes some colour to the film. [Pg.674]

Toxicity, chemicals and, 25-26 Trans fatty acid, from hydrogenation of fats, 232-233 from vegetable oils, 1063 Transamination, 1165-1168 mechanism of, 1167... [Pg.1317]

The addition of acetic acid anhydride or acetyl chloride was found to accelerate the reaction. In certain instances other solvents are also used. Phosphates of higher molecular weight alcohols was formed by reaction with P4O10 or POCl3 in the presence of benzene [18-20]. Specific examples describe the reaction of P4O10 with diglycerides from vegetable oil in the presence of isopro-... [Pg.557]

Isolation and detection of silicones from vegetable oils (detection limit 2 pg)... [Pg.365]

Organophilic polyphenolic materials for oil-based drilling fluids have been described [407], The additives are prepared from a polyphenolic material and one or more phosphatides. The phosphatides are phosphoglycerides obtained from vegetable oils, preferably commercial lecithin. Humic acids, ligno-sulfonic acid, lignins, phenolic condensates, tannins the oxidized, sulfonated, or sulfomethylated derivatives of these polyphenolic materials may serve as polyphenolic materials. [Pg.45]

In Japan, the standard Eco Mark Product Category No. 102 Printing Ink Version 2.6 [26] sets on a voluntary basis standards for an environmentally friendly composition of printing inks. Since introduction of this standard in 1997, more than 90% of all offset inks in Japan were reformulated to inks free from aromatic compounds ( white oil ). To fulfil the above-mentioned standard, the inks should be based on vegetable oils. They should not contain more than 1 vol.% of aromatic hydrocarbons ( white oils ). Additionally, sheet-fed offset inks should not contain more than 30% of crude oil-based solvents and not more than 3% VOC. Web offset inks should contain no more than 45% crude oil solvents (which seems not really to be a progress in comparison to typical standard inks). By the way, it is expected from vegetable oil-based inks that the print products are as deinkable as conventional mineral oil-based offset inks. [Pg.410]

Sivasamy, A., Cheah, K.Y., Fornasiero, P., Kemausuor, F., Zinoviev, S., and Miertus,S. (2009) Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem, 2 (4), 278-300. [Pg.131]

Canada s Montreal oil refinery, has operated successfully since 1986. A variation for treating extracts from tar sands was developed by Petro-Canada Exploration and the Department of Energy Mines and Resources and piloted in Canada in the 1980s. Another variation, for making diesel fuel from vegetable oils, was piloted in Vancouver in 1992. [Pg.49]

Most forms of grease in the kitchen derive from organic materials in the home - some derive from meat, some from vegetable oils and some from pets in the home, or even human tissue such as oily fingerprints. (Kitchen grease is, in fact, a complicated mixture of chemicals, each of which reacts with bleach at a different rate and, therefore, with a different value of k.)... [Pg.354]

Surfactants and Emulsifiers Derived from Vegetable Oil Based Fatty Alcohols and Fatty Acids... [Pg.86]

Since FAS can be produced either from vegetable oil based or petrochemical-based fatty alcohol (Fig. 4.9), both types have been evaluated in a life-cycle analysis with a positive overall result for the natural based product. With vegetable-based fatty alcohol sulfate, the analysis starts with the harvesting of the oil fruits (palm kernels or coconuts) and their processing to isolate the desired plant oil. Subsequent transesterification and hydrogenation of the methyl ester intermediates lead to the fatty alcohols, which are finally sulfated to produce the desired product. Based on this analysis the environmental impact of vegetable oil based fatty alcohol sulfate compared with the petrochemical based product is as follows ... [Pg.88]

In the development of the protein-fatty acid condensates it was possible to combine the renewable resources fatty acids (from vegetable oil) and protein, which can be obtained from both animal waste (leather) as well as from many plants, to construct a surfactant structure with a hydrophobic (fatty acid) and a hydrophilic (protein) part (Fig. 4.12). This was carried out by reacting protein hydrolysate with fatty acid chloride under Schotten-Baumann conditions using water as solvent. Products are obtained that have an excellent skin compatibility and, additionally, a good cleaning effect (particularly on the skin) and, in combination with other surfactants, lead to an increase in performance. For instance, even small additions of the acylated protein hydrolysate improve the skin compatibility. An... [Pg.88]

Plant sterols such as sitosterol and camposterol, as by-products from vegetable oils at prices of about 15 kg-1, are also important starting materials for the production of steroid hormones. A new application is the cholesterol lowering property of these sterols esterified with fatty acids (with a production of about 10000 t a 1). They can be found in the margarine Becel pro-active of Unilever. A Finnish equivalent is Benecol, which contains stands such as sitostanol and campostanol, sterols having the 5,6-double bound hydrogenated, also esterified with fatty adds [33]. [Pg.113]

Biodiesel is a mixture of methyl esters of fatty acids and is produced from vegetable oils by transesterification with methanol (Fig. 10.1). For every three moles of methyl esters one mole of glycerol is produced as a by-product, which is roughly 10 wt.% of the total product. Transesterification is usually catalyzed with base catalysts but there are also processes with acid catalysts. The base catalysts are the hydroxides and alkoxides of alkaline and alkaline earth metals. The acid catalysts are hydrochloride, sulfuric or sulfonic acid. Some metal-based catalysts can also be exploited, such as titanium alcoholates or oxides of tin, magnesium and zinc. All these catalyst acts as homogeneous catalysts and need to be removed from the product [16, 17]. The advantages of biodiesel as fuel are transportability, heat content (80% of diesel fuel), ready availability and renewability. The... [Pg.211]

The titanium-containing silicas were also employed in the epoxidation of a series of FAME mixtures obtained directly from vegetable oils, namely high-oleic (HO) sunflower oil, coriander oil, castor oil and soya-bean oil, by esterification with so-... [Pg.266]

Abidi, S. L. (2004). Capillary electrochromatography of sterols and related steryl esters derived from vegetable oils. J. Chromatogr. A 1059, 199—208. [Pg.475]

Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytie and non-eatalytie supereritieal aleohol transesterifieations and other methods a survey. Energy Convers Manage 44 2093-2109. [Pg.83]

Demirbas, A. 2008e. New liquid biofuels from vegetable oils via catalytic pyrolysis. Energy Edu Sei Teehnol 21 1-59. [Pg.84]


See other pages where Vegetables oil from is mentioned: [Pg.251]    [Pg.306]    [Pg.1080]    [Pg.337]    [Pg.66]    [Pg.66]    [Pg.1295]    [Pg.31]    [Pg.264]    [Pg.273]    [Pg.291]    [Pg.558]    [Pg.86]    [Pg.187]    [Pg.132]    [Pg.127]    [Pg.151]    [Pg.91]    [Pg.47]    [Pg.71]    [Pg.263]    [Pg.45]    [Pg.59]    [Pg.53]    [Pg.71]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



From oil

© 2024 chempedia.info