Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium BASF process

It is now nearly 40 years since the introduction by Monsanto of a rhodium-catalysed process for the production of acetic acid by carbonylation of methanol [1]. The so-called Monsanto process became the dominant method for manufacture of acetic acid and is one of the most successful examples of the commercial application of homogeneous catalysis. The rhodium-catalysed process was preceded by a cobalt-based system developed by BASF [2,3], which suffered from significantly lower selectivity and the necessity for much harsher conditions of temperature and pressure. Although the rhodium-catalysed system has much better activity and selectivity, the search has continued in recent years for new catalysts which improve efficiency even further. The strategies employed have involved either modifications to the rhodium-based system or the replacement of rhodium by another metal, in particular iridium. This chapter will describe some of the important recent advances in both rhodium- and iridium-catalysed methanol carbonylation. Particular emphasis will be placed on the fundamental organometallic chemistry and mechanistic understanding of these processes. [Pg.187]

As mentioned in the previous section, the carbonylation of methanol to acetic acid is an important industrial process. Whereas the [Co2(CO)s]-catalyzed, iodide-promoted reaction developed by BASF requires pressures of the order of 50 MPa, the Monsanto rhodium-catalyzed synthesis, which is also iodide promoted and which was discovered by Roth and co-workers, can be operated even at normal pressure, though somewhat higher pressures are used in the production units.4,1-413 The rhodium-catalyzed process gives a methanol conversion to acetic acid of 99%, against 90% for the cobalt reaction. The mechanism of the Monsanto process has been studied by Forster.414 The anionic complex m-[RhI2(CO)2]- (95) initiates the catalytic cycle, which is shown in Scheme 26. [Pg.272]

A block diagram of the Monsanto process for acetic acid production is shown in Fig. 4.13. The process flow sheet is simple since the reaction conditions are mild (180°C/30-40 bar) when compared to the BASF process (250°C/700 bar). More than 40% of world s acetic acid is made by the Monsanto process. One of the problems with this process is the continuous loss of iodine. A block diagram of the Eastman process for acetic anhydride production is shown in Fig. 4.14. The process generates minimum waste, and all process tars are destroyed to recover iodine and rhodium. [Pg.77]

Ans. In the BASF process more Fischer-Tropsch by-products are formed. In Rh -based catalysis rhodium is maintained in the lower oxidation state, ensuring that 4.1 concentration is higher than 4.12 and the acetic acidforming cycle dominates. [Pg.80]

In the BASF process the 1,2-diacetate is the substrate for the hydroformylation step. It can be prepared either directly via oxidative acetoxylation of butadiene using a selenium catalyst or via PtCl4-catalyzed isomerization of the 1,4-diacetate (see above). The latter reaction affords the 1,2-diacetate in 95% yield. The hydroformylation step is carried out with a rhodium catalyst without phosphine ligands since the branched aldehyde is the desired product (phosphine ligands promote the formation of linear aldehydes). Relatively high pressures and temperatures are used and the desired branched aldehyde predominates. The product mixture is then treated with sodium acetate in acetic acid to effect selective elimination of acetic acid from the branched aldehyde, giving the desired C5 aldehyde. [Pg.65]

Mankind has produced acetic acid for many thousand years but the traditional and green fermentation methods cannot provide the large amounts of acetic acid that are required by today s society. As early as 1960 a 100% atom efficient cobalt-catalyzed industrial synthesis of acetic acid was introduced by BASF, shortly afterwards followed by the Monsanto rhodium-catalyzed low-pressure acetic acid process (Scheme 5.36) the name explains one of the advantages of the rhodium-catalyzed process over the cobalt-catalyzed one [61, 67]. These processes are rather similar and consist of two catalytic cycles. An activation of methanol as methyl iodide, which is catalytic, since the HI is recaptured by hydrolysis of acetyl iodide to the final product after its release from the transition metal catalyst, starts the process. The transition metal catalyst reacts with methyl iodide in an oxidative addition, then catalyzes the carbonylation via a migration of the methyl group, the "insertion reaction". Subsequent reductive elimination releases the acetyl iodide. While both processes are, on paper, 100%... [Pg.246]

As far as large ale industrial application is concerned, the major Reppepropionic acid from ethylene. This was carried out by a BASF process (plant of about 30000 l/a) under 240 atm at 2 0 C with NKCO) as the catalyst. It also appears that Monsanto has a rhodium-catalyzed process on stream, which operates under milder conditions. [Pg.141]

Structure 4 is an intermediate for manufaeturing vitamin A (Scheme 2). The annual demand for vitamin A is about 3000 tons. Major producers are BASF, Hoffmann-La Roche and Rhone-Poulenc Animal Nutrition [55]. At an early stage in the synthesis BASF and Hoffmann-La Roche are using a hydroformylation step to synthesize 4 starting from l,2-diacetoxy-3-butene (5) and 1,4-di-aeetoxy-2-butene (6), respectively [56, 57]. The selectivity toward the branched product in the BASF process is achieved by using an unmodified rhodium carbonyl catalyst at a high reaction temperature. The symmetry of 6 in La Roche s process does not lead to regioselectivity problems. Elimination of acetic acid and isomerization of the exo double bond (La Roche) yields the final product 4 in both processes. [Pg.40]

Developed nearly in parallel with the UCC s LPO process, the BASF process also makes use of a gas recycle to separate aldehydes and catalyst solution [216]. The latter also consists of aldehyde condensation products [217] with TPP and the corresponding rhodium complex dissolved therein [218, 219]. With about 3-5 wt. % the concentration of TPP is rather low, thus limiting the rhodium concentration to a level below 200 ppm in order to establish a P/Rh ratio of about 100 1 (mol/g-at). Accordingly, the n/i ratio is somewhere in the range of 84 16. With a temperature of about 110°C, the pressure is limited to about 1.5-1.7 MPa to avoid too large a recycle. [Pg.82]

The representative carbonylations with rhodium catalysts is the Monsanto acetic acid process which started in 1970 with a production amount of three million pounds per year [82-91]. In this carbonylation, the 0x0 process of the Reppe reaction is carried out at 250-270°C, 200-300atm with nickel catalysts, and the BASF process is carried out at 210°C, 530atm with a Co/I catalyst. However, the Monsanto acetic acid process shown in eq. (18.37) is carried out under mild reaction conditions in a high selectivity of acetic acid with rhodium catalyst. The catalyst is RhCl3 3H20 and the active species is considered to be [Rh(CO)2l2] ... [Pg.403]

Interesting news was released by Monsanto [1011, 1012] who reported that they are going to build a large acetic acid plant at Texas City for startup in 1970. Acetic acid will be manufactured by low pressure carbonylation of methanol using a rhodium catalyst together with a halogen promotor [1009, 1010, 1013] instead of cobalt catalyst, which is used in the BASF process. [Pg.122]

Before 1970, acetic acid was manufactured by the BASF process utilizing cobalt-based catalysts, and high temperatures and pressures. Replacement of this procedure by the Monsanto process brought advantages of milder conditions and greater selectivity (Table 25.3). The Monsanto process uses a rhodium-based catalyst, and involves two interrelated... [Pg.951]

In the BASF process, methanol and CO are converted in the liquid phase by a homogeneous Co-based catalyst. The reaction takes place in a high-pressure Hastelloy reactor. In recent decades the BASF process has been increasingly replaced by low-pressure alternatives mainly due to lower investment and operating costs. In the low-pressure Monsanto process methanol and CO react continuously in liquid phase in the presence of a Rhl2 catalyst. In 1996, BP developed a new attractive catalyst based on iridium (Cativa process) the oxidative addition of methyl iodide to iridium is 150-times faster than to rhodium. The search for acetic acid production processes with even lower raw material costs has led to attempts to produce acetic acid by ethane oxidation. In the near future ethane oxidation will most likely not compete with methanol carbonylation (even though ethane is a very cheap and attractive raw material) because of the low ethane conversions, product inhibition problems, and a large variety of by-products. [Pg.749]

The industrial manufacture of acetic acid by methanol carbonylation (Equation (1)) has utilized catalysts based upon all three of the group 9 metals, since the initial development by BASF of a cobalt/iodide-based system. " The BASF process required harsh conditions of temperature and pressure, and suffered from relatively low selectivity. It was soon superceded by highly selective, low-pressure rhodium/iodide-based catalysts developed by Monsanto. The Monsanto process (and related variants operated by other manufacturers) quickly became dominant and remains one of the most successful examples of the commercial application of homogeneous catalysis.Rhodium catalysts for methanol carbonylation are discussed in Chapter 7.03. [Pg.428]

Meanwhile, Wacker Chemie developed the palladium-copper-catalyzed oxidative hydration of ethylene to acetaldehyde. In 1965 BASF described a high-pressure process for the carbonylation of methanol to acetic acid using an iodide-promoted cobalt catalyst (/, 2), and then in 1968, Paulik and Roth of Monsanto Company announced the discovery of a low-pressure carbonylation of methanol using an iodide-promoted rhodium or iridium catalyst (J). In 1970 Monsanto started up a large plant based on the rhodium catalyst. [Pg.256]

Other methods for the preparation of acetic acid are partial oxidation of butane, oxidation of ethanal -obtained from Wacker oxidation of ethene-, biooxidation of ethanol for food applications, and we may add the same carbonylation reaction carried out with a cobalt catalyst or an iridium catalyst. The rhodium and iridium catalysts have several distinct advantages over the cobalt catalyst they are much fester and fer more selective. In process terms the higher rate is translated into much lower pressures (the cobalt catalyst is operated by BASF at pressures of 700 bar). For years now the Monsanto process (now owned by BP) has been the most attractive route for the preparation of acetic acid, but in recent years the iridium-based CATTVA process, developed by BP, has come on stream. [Pg.109]

Methanol process. BASF introduced high-pressure technology way back in I960 to make acetic acid out of methanol and carbon monoxide instead of ethylene. Monsanto subsequently improved the process by catalysis, using an iodide-promoted rhodium catalyst. This permits operations at much lower pressures and temperatures. The methanol and carbon monoxide, of course, come from a synthesis gas plant. [Pg.259]

Acetic Acid. Carbonylation of methanol is the most important reaction in the production of acetic acid.189-192 BASF developed a process applying C0I2 in the liquid phase under extreme reaction conditions (250°C, 650 atm).122 193 The Monsanto low-pressure process, in contrast, uses a more active catalyst combining a rhodium compound, a phosphine, and an iodine compound (in the form of HI, Mel, or T2).122 194—196 Methanol diluted with water to suppress the formation of methyl acetate is reacted under mild conditions (150-200°C, 33-65 atm) to produce acetic acid with 99% selectivity at 100% conversion. [Pg.386]

The BASF cobalt/iodide catalyzed process for methanol carbonylation was quite quickly superseded by a rhodium/iodide catalyzed process discovered at Monsanto and first commercialized in 1970 at a plant in Texas City. The Monsanto process was a significant advance and became one of the few large tonnage processes to use a homogeneous transition metal catalyst. It was later... [Pg.121]

The production of carboxylic acids via carbonylation catalysis is the second most important industrial homogeneous group of processes. Reppe developed most of the basic carbonylation chemistry in the 1930s and 1940s. The first commercial carbonylation process was the stoichiometric Ni(CO)4-based hydroxycarbonylation of acetylene to give acrylic acid (see Section 3.5 for details). This discovery has since evolved into a trae Ni-catalyzed process, used mainly by BASF. The introduction of rhodium catalysts in the 1970s revolutionized carboxylic acid production, particularly for acetic acid, much in the same way that Rh/PPhs catalysts changed the importance of hydroformylation catalysis. [Pg.676]

The concept of co-carbonylation of methanol/methyl acetate mixtures was first introduced by BASF in the early 1950s, but the reaction chemistry was not fully developed to commercial realization [75]. Not until the mid-1980s, after the development of carbonylation processes to produce acetic acid and acetic anhydride, were co-carbonylation processes patented using homogeneous rhodium/iodine catalyst systems (Table 2) [2, 56]. The basic process concept is to manufacture acetic acid and acetic anhydride from methanol and carbon monoxide as the only raw materials and to generate methyl acetate within the process. Similiarly, the suitability of dimethyl ether as a raw material for the generation of the anhydride equivalent in addition to or as a substitute for methyl acetate was revealed by Hoechst [76]. To produce a small fraction of acetic acid besides acetic anhydride as the main product, the carbonylation of methyl acetate could be conducted with small amounts of water or methanol. This variant, first demonstrated by Hoechst [56], is practiced by Eastman Kodak [2]. [Pg.122]

Hydroformylation or oxosynthesis is a well-known homogeneous, transition metal catalyzed reaction which has known considerable and continuous development since its discovery by Otto Roelen in the laboratories of Ruhrchemie AG in 1938 [1], This reaction, which can be considered as the addition of a formyl group and hydrogen to a double bond, has been successfully applied in the industrial context by using two basic processes the homogeneous process where the rhodium or cobalt catalyst and the substrate are in the same phase (Shell, UCC, BASF, RCH processes) [2] and the aqueous/organic biphasic process where the water-soluble rhodium catalyst and the organic compounds are in two different phases (Ruhr-chemie/Rhone-Poulenc process) [3]. [Pg.410]

The second-generation process corresponds to the use of the more active rhodium catalysts (Celanese Corporation, Union Carbide, BASF, Mitsubishi). These processes are performed under mild reaction conditions and generate many fewer byproducts. The selectivity for linear aldehydes is also increased. Thanks to the use of phosphine ligands, the thermal stability of the catalyst is increased and the recycling can be performed by distillation with moderate rhodium losses. [Pg.478]

Hydrogen cyanide is produced industrially by thermolysis of formamide, or from methane and ammonia on platinum-rhodium catalysts (following a process developed by Leonid Andrussow (1896-1988) in 1927 at BASF in Ludwigs-hafen) (Fig. 5.196). [Pg.473]

The production of another important chemical and polymer intermediate, acetic acid, was revolutionized by the Wacker process that was introduced in 1960. It was a simple, high yield process for converting ethylene to acetaldehyde, which replaced the older process based on ethanol and acetylene. In the Wacker reaction, the palladium catalyst is reduced and then reoxidized. Ethylene reacts with water and palladium chloride to produce acetaldehyde and palladium metal. The palladium metal is reoxidized by reaction with cupric chloride, which is regenerated by reaction with o gen and hydrochloric acid. In 1968, BASF commercialized an acetic acid process based on the reaction of carbon monoxide and methanol, using carbonyl cobalt promoted with an iodide ion (74). Two years later, however, Monsanto scored a major success with its rhodium salt catalyst with methyl iodide promoter. Developed by James F. Roth, this new catalyst allowed operation at much milder conditions (180°C, 30-40 atm) and demonstrated high selectivity for acetic acid (75). [Pg.1039]


See other pages where Rhodium BASF process is mentioned: [Pg.122]    [Pg.676]    [Pg.11]    [Pg.675]    [Pg.287]    [Pg.744]    [Pg.4]    [Pg.204]    [Pg.219]    [Pg.8]    [Pg.352]    [Pg.679]    [Pg.237]    [Pg.649]    [Pg.661]    [Pg.235]    [Pg.6]    [Pg.37]    [Pg.376]    [Pg.745]    [Pg.746]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



BASF

BASF process

Rhodium processes

© 2024 chempedia.info