Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Harsh conditions

Another test is the total oxygen demand (TOD) test, which oxidizes the waste in the presence of a catalyst at 900°C in a stream of air. Under these harsh conditions, all the carbon is oxidized to CO2. The oxygen demand is calculated from the difference in oxygen content of the air before and after oxidation. The resulting value of TOD... [Pg.308]

Hydrolysis of primary amides cataly2ed by acids or bases is very slow. Even more difficult is the hydrolysis of substituted amides. The dehydration of amides which produces nitriles is of great commercial value (8). Amides can also be reduced to primary and secondary amines using copper chromite catalyst (9) or metallic hydrides (10). The generally unreactive nature of amides makes them attractive for many appHcations where harsh conditions exist, such as high temperature, pressure, and physical shear. [Pg.183]

Good yields of 2,4-diaminoquinolines are obtained through either Lewis acid- or base-induced cyclization of 2-amidinobenzonitriles (20) (58). The method avoids both the harsh conditions and lack of regiospecificity characteristic of earlier preparations. [Pg.392]

The relative susceptibHity of several commercial aHoys is presented in Table 8. The index used is a relative rating based on integrating performance in various environments. These environments include the harsh condition of exposure to moist ammonia, Hght-to-moderate industrial atmospheres, marine atmosphere, and an accelerated test in Mattsson s solution. The latter testing is described in ASTM G30 and G37 (35,36) and is intended to simulate industrial atmospheres. The index is linear. A rating of 1000 relates to the most susceptible and zero designates immunity to stress corrosion. [Pg.226]

The isomerization of oxaziridines (1) to acid amides with migration of a substituent from C to N is a general reaction and is always observed when no other reactions predominate under the relatively harsh conditions (heating to above 150 °C or photolysis). Even then one can make acid amide formation the main reaction by working at 300 °C (57JA5739) and by dilution techniques. For example, caprolactam (63) is formed in 88% yield by flash pyrolysis of oxaziridine (52) at about 300 °C, whereas decomposition of (52) at lower temperatures gives almost no (63) (77JPR274). [Pg.205]

The tritylone ether is used to protect primary hydroxyl groups in the presence of secondary hydroxyl groups. It is prepared by the reaction of an alcohol with 9-phenyl-9-hydroxyanthrone under acid catalysis (cat. TsOH, benzene, reflux, 55-95% yield).It can be cleaved under the harsh conditions of the WolfT-Kishner reduction (H2NNH2, NaOH, 200°, 88% yield), " and by electrolytic reduction (-1.4 V, LiBr, MeOH, 80-85% yield). It is stable to 10% HCl, 55 h. ... [Pg.66]

In these papers the carboxylic acid to be protected was a stable, unsubstituted compound. Harsh conditions wei acceptable for both formation and cleavage of the amide. [Pg.273]

Extremozymes—enzymes that can tolerate relatively harsh conditions, suggested as catalysts for complex organic synthesis of fine chemicals and pharmaceuticals (Govardhan and Margolin, 1995). [Pg.39]

Chlorination of 3-(trifluoromethyl)pyridine takes place under fairly harsh conditions [36] (equation 18)... [Pg.371]

Many high molecular weight synthetic polymers, such as polyethylene and polypropylene, have a large percentage of their molecules in the crystalline state. Prior to dissolution, these polymers must usually be heated almost to their melting points to break up the crystalline forces. Orthodichlorobenzene (ODCB) is a typical mobile phase for these polymers at 150°C. The accuracy and stability of the Zorbax PSM columns under such harsh conditions make them ideal for these analyses (Fig. 3.8). [Pg.86]

FIGURE 3.8 The stability of Zorbax PSM columns makes them ideal for applications that require extremely harsh conditions, such as high temperature HPSEC of polyolefins. [Pg.87]

In these papers, the carboxylic acid to be protected was a stable, unsubstituted compound. Harsh conditions were acceptable for both formation and cleavage of the amide. Typically, a simple secondary amide is very difficult to cleave. As the pKa of the conjugate acid of an amide decreases, the rate of hydrolysis of amides derived from these amines increases. The dimethylamide of a cephalosporin was prepared as follows using 2,2 -dipyridyl disulfide. ... [Pg.446]

Boronic esters are easily prepared from a diol and the boronic acid with removal of water, either chemically or azeotropically. (See Chapter 2 on the protection of diols.) Sterically hindered boronic esters, such as those of pinacol, can be prepared in the presence of water. Boronic esters of simple unhindered diols are quite sensitive to water and hydrolyze readily. On the other hand, very hindered esters, such as the pinacol and pinanediol derivatives, are exceedingly difficult to hydrolyze and often require rather harsh conditions to achieve cleavage. [Pg.452]

Alkylation and arylation of the aminofuroxans are unknown as yet, presumably because of their instability under harsh conditions. However, aziridino furoxans may be used as precursors for preparation of functionalized alkylamino derivatives (Scheme 113) (88AP77). [Pg.122]

The first example of an indolo[2,3-a]carbazole derivative reported with a reasonably estabhshed structure was the mono N-methylated system 9, prepared via dehydrogenation with palladium on charcoal of the octahydro derivative 10, available via reaction of the aminocarbazole 11 with 2-hydroxycyclohexanone in the presence of a trace amount of anihnium bromide (Scheme 1). An approach toward the parent compound 1 using the same method has also been attempted, although without success (56JCS4783). The utility of this route is impaired by the complexity of the starting material, which requires multistep preparation, and the harsh conditions of the final step. [Pg.3]

TheNef reaction of primary nitro compounds gives iildehydes or carboxylic acids, depending on the reaction conditions. Each transformation provides an important tool in organic synthesis. Primary nitro compotmds are converted into carboxylic acids vrith concentrated mineriil acids. Because such harsh conditions iilso lead to side reactions, a milder method is required inorganic synthesis. Basic phosphate-buffered KMnO rapidly converts primary nitroalkanes into carboxylic acids in 90-99% yield fEq. 6.13. "... [Pg.162]

The reaction is an F.1 process and occurs through the three-step mechanism shown in Figure 17.6). As usual for El reactions (Section 11.10), only tertiary alcohols are readily dehydrated with acid. Secondary alcohols can be made to react, but the conditions are severe (75% H2S04,100 °C) and sensitive molecules don t survive. Primary alcohols are even less reactive than secondary ones, and very harsh conditions are necessary to cause dehydration (95% H2S04,150 °C). Thus, the reactivity order for acid-catalyzed dehydrations is... [Pg.620]

When a cold (-78 °C) solution of the lithium enolate derived from amide 6 is treated successively with a,/ -unsaturated ester 7 and homogeranyl iodide 8, intermediate 9 is produced in 87% yield (see Scheme 2). All of the carbon atoms that will constitute the complex pentacyclic framework of 1 are introduced in this one-pot operation. After some careful experimentation, a three-step reaction sequence was found to be necessary to accomplish the conversion of both the amide and methyl ester functions to aldehyde groups. Thus, a complete reduction of the methyl ester with diisobutylalu-minum hydride (Dibal-H) furnishes hydroxy amide 10 which is then hydrolyzed with potassium hydroxide in aqueous ethanol. After acidification of the saponification mixture, a 1 1 mixture of diastereomeric 5-lactones 11 is obtained in quantitative yield. Under the harsh conditions required to achieve the hydrolysis of the amide in 10, the stereogenic center bearing the benzyloxypropyl side chain epimerized. Nevertheless, this seemingly unfortunate circumstance is ultimately of no consequence because this carbon will eventually become part of the planar azadiene. [Pg.467]

Notwithstanding the drawbacks to the method, the addition of nitrenes to alkenes is a well studied classical method for direct aziridination. The original reactions (often involving alkoxycarbonylnitrenes) employed harsh conditions, resulting in nonstereoselective transformations. In these pioneering reports, the requi-... [Pg.119]

Despite the effectiveness of chloramine-T in this new method, removal of the toluenesulfonyl group from the newly introduced nitrogen substituent requires harsh conditions. The finding that the N-chloramine salt of tert-butylsulfonamide is also an efficient nitrogen source and the terminal oxidant for aziridination of... [Pg.456]

Since most aaAAs are hydrophobic in nature, peptides rich in aaAAs are generally restricted to study in organic solvents due to their low solubility in aqueous media. There have been very few examples of side-chain functionalized aaAAs that would allow for the synthesis of highly water-soluble peptides rich in aaAA content.3 This is primarily due to difficulty of synthesis, since side-chain functionalized derivatives must be orthogonally protected to allow for incorporation into solid-phase peptide synthesis. The harsh conditions, under which standard methods of aaAA synthesis are performed, make this a difficult task. [Pg.116]

The administration of drugs to ease disease and chronic, severe pain or to provide benefits such as hormone replacement therapy is difficult because drugs taken orally may lose much of their potency in the harsh conditions of the digestive system. In addition, they are distributed throughout the entire body, not just where they are needed, and side effects can be significant. Recently, however, techniques have been developed to deliver drugs gradually over time, to the exact location in the body where they are needed, and even at the time when they are needed. [Pg.465]

Hydrolysis of nitriles normally requires quite harsh conditions and long reaction times [101,102]. Applying microwave irradiation for this type of re-... [Pg.25]

Abstract Current microwave-assisted protocols for reaction on solid-phase and soluble supports are critically reviewed. The compatibility of commercially available polymer supports with the relatively harsh conditions of microwave heating and the possibilities for reaction monitoring are discussed. Instrmnentation available for microwave-assisted solid-phase chemistry is presented. This review also summarizes the recent applications of controlled microwave heating to sohd-phase and SPOT-chemistry, as well as to synthesis on soluble polymers, fluorous phases and functional ionic liquid supports. The presented examples indicate that the combination of microwave dielectric heating with solid- or soluble-polymer supported chemistry techniques provides significant enhancements both at the level of reaction rate and ease of purification compared to conventional procedures. [Pg.80]

Vessels designed for microwave-assisted SPOS must fulfill several require-menfs because of fhe harsh conditions (i.e., high temperatures and pressures) usually associated with microwave heating. Open vessels are often impractical because of the possible loss of solvent and/or volatile reagents during the heating process. However, in cases where a volatile byproduct inhibits a reaction, their use may be superior over closed systems. A sealed vessel retains the solvents and reagents, but must be sturdily constructed to avoid the obvious safety implications due to the buildup of pressure. [Pg.90]

A related reaction has been described for the synthesis of 2-quinolones, reacting substituted secondary anilines with malonic acid derivatives. The reaction was carried out neat under microwave irradiation at 290 °C for 15 min. These harsh conditions were reqiured for the elimination of two... [Pg.252]

There has been a plethora of recent hterature regarding the synthetic manipulations of the 2(lH)-pyrazinone skeleton. Even though the addition-elimination reactions at the C-3 position to decorate the pyrazinone scaffold are well documented [24], the versatihty of such approaches can be found somewhat limited. Selective attack of nucleophiles on the chloroimine group of the pyrazinone system can generate 3-alkoxy- and 3-amino-pyrazinones (Scheme 9) [27,28]. The 3-CN group was introduced via a Rosemund-von Braun reaction with copper(I)cyanide under harsh conditions (heating in NMP at 150 °C) [27] (Scheme 9). [Pg.274]


See other pages where Harsh conditions is mentioned: [Pg.211]    [Pg.562]    [Pg.87]    [Pg.242]    [Pg.233]    [Pg.466]    [Pg.296]    [Pg.209]    [Pg.224]    [Pg.236]    [Pg.140]    [Pg.169]    [Pg.116]    [Pg.17]    [Pg.144]    [Pg.155]    [Pg.227]    [Pg.516]    [Pg.95]    [Pg.62]    [Pg.73]    [Pg.903]    [Pg.14]   
See also in sourсe #XX -- [ Pg.81 ]

See also in sourсe #XX -- [ Pg.178 , Pg.322 , Pg.344 ]




SEARCH



Harsh

Harsh reaction conditions

Stability under Harsh Conditions

© 2024 chempedia.info