Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lower Oxidation State

Pb + 40H + 2H2O [PbfOH) ] + H2t Notice, again, that the lower oxidation state of lead is formed. [Pg.171]

When the characteristic element is partially or wholly present in a lower oxidation state than corresponds to its Periodic Group number, oxidation numbers are used for example, [O2HP—O—P03H] , dihydrogendiphosphate(III,V)(2—). [Pg.219]

Oxides of nitrogen, NO, can also form. These are generally at low levels and too low an oxidation state to consider water scmbbing. A basic reagent picks up the NO2, but not the lower oxidation states the principal oxide is usually NO, not NO2. Generally, control of NO is achieved by control of the combustion process to minimize NO, ie, avoidance of high temperatures in combination with high oxidant concentrations, and if abatement is required, various approaches specific to NO have been employed. Examples are NH injection and catalytic abatement (43). [Pg.58]

Many mercury compounds are labile and easily decomposed by light, heat, and reducing agents. In the presence of organic compounds of weak reducing activity, such as amines (qv), aldehydes (qv), and ketones (qv), compounds of lower oxidation state and mercury metal are often formed. Only a few mercury compounds, eg, mercuric bromide/77< 5 7-/7, mercurous chloride, mercuric s A ide[1344-48-5] and mercurous iodide [15385-57-6] are volatile and capable of purification by sublimation. This innate lack of stabiUty in mercury compounds makes the recovery of mercury from various wastes that accumulate with the production of compounds of economic and commercial importance relatively easy (see Recycling). [Pg.112]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

Impurities that form volatile chlorides leave as gases at the top of the furnace together with the TiCl. By cooling those gases, most impurities, with the exception of vanadium and siUcon chlorides can be separated from the titanium tetrachloride [7550-45-0]. Vanadium chlorides can be reduced to lower oxidation state chlorides that are soHds highly volatile SiCl can be removed from TiCl by fractional distillation. [Pg.9]

Organometallic Compounds. Ruthenium, predominately in the oxidation states 0 and +2, forms numerous mononuclear and polynuclear organometaUic compounds. A few examples of compounds in both higher and lower oxidation states also exist. The chemistry of polynuclear mthenium complexes is extensive and has been reviewed (53—59). [Pg.177]

Organometallic Compounds. Osmium forms numerous mononuclear and polynuclear organometaUic complexes, primarily iu lower oxidation states. There are many complexes of carbon monoxide, such as [Os(CO)3] [16406-49-8], [Os(CO) H2] [22372-70-9], [Os3(CO)2 H2] [56398-24-4],... [Pg.179]

The action of redox metal promoters with MEKP appears to be highly specific. Cobalt salts appear to be a unique component of commercial redox systems, although vanadium appears to provide similar activity with MEKP. Cobalt activity can be supplemented by potassium and 2inc naphthenates in systems requiring low cured resin color lithium and lead naphthenates also act in a similar role. Quaternary ammonium salts (14) and tertiary amines accelerate the reaction rate of redox catalyst systems. The tertiary amines form beneficial complexes with the cobalt promoters, faciUtating the transition to the lower oxidation state. Copper naphthenate exerts a unique influence over cure rate in redox systems and is used widely to delay cure and reduce exotherm development during the cross-linking reaction. [Pg.319]

Rhenium Halides and Halide Complexes. Rhenium reacts with chlorine at ca 600°C to produce rheniumpentachloride [39368-69-9], Re2Cl2Q, a volatile species that is dimeric via bridging hahde groups. Rhenium reacts with elemental bromine in a similar fashion, but the metal is unreactive toward iodine. The compounds ReCl, ReBr [36753-03-4], and Rel [59301-47-2] can be prepared by careful evaporation of a solution of HReO and HX. Substantiation in a modem laboratory would be desirable. Lower oxidation state hahdes (Re X ) are also prepared from the pentavalent or tetravalent compounds by thermal decomposition or chemical reduction. [Pg.164]

Some metal thiosulfates are inherently unstable because of the reducing properties of the thiosulfate ion. Ions such as Fe " and Cu " tend to be reduced to lower oxidation states, whereas mercury or silver, which form sulfides of low solubiUty, tend to decompose to the sulfides. The stabiUty of other metal thiosulfates improves in the presence of excess thiosulfate by virtue of complex thiosulfate formation. [Pg.32]

Vanadium, a typical transition element, displays weU-cliaractetized valence states of 2—5 in solid compounds and in solutions. Valence states of —1 and 0 may occur in solid compounds, eg, the carbonyl and certain complexes. In oxidation state 5, vanadium is diamagnetic and forms colorless, pale yeUow, or red compounds. In lower oxidation states, the presence of one or more 3d electrons, usually unpaired, results in paramagnetic and colored compounds. All compounds of vanadium having unpaired electrons are colored, but because the absorption spectra may be complex, a specific color does not necessarily correspond to a particular oxidation state. As an illustration, vanadium(IV) oxy salts are generally blue, whereas vanadium(IV) chloride is deep red. Differences over the valence range of 2—5 are shown in Table 2. The stmcture of vanadium compounds has been discussed (6,7). [Pg.390]

Metal-Catalyzed Oxidation. Trace quantities of transition metal ions catalyze the decomposition of hydroperoxides to radical species and greatiy accelerate the rate of oxidation. Most effective are those metal ions that undergo one-electron transfer reactions, eg, copper, iron, cobalt, and manganese ions (9). The metal catalyst is an active hydroperoxide decomposer in both its higher and its lower oxidation states. In the overall reaction, two molecules of hydroperoxide decompose to peroxy and alkoxy radicals (eq. 5). [Pg.223]

Oxidations of nitrogen compounds include oxidauon ai nitrogen, when it is in a lower oxidation state, or at a carbon atom in the nitrogen compound. [Pg.347]

Cu ( j -C5H5)2] is not. Likewise, Fe and Ni carborane derivatives are extremely stable. Conversely, metallocarboranes tend to stabilize lower oxidation states of early transition elements and complexes are well established for Ti", Zr , Hf , V , Cr and Mn" these do not react with H2, N2, CO or PPh3 as do cyclopentadienyl derivatives of these elements. [Pg.195]

Similarly, CI2 sometimes yields a higher and Br2 a lower oxidation state, e.g. M0CI5 and MoBr3. [Pg.822]

It is far more chemically reactive than FCIO3 (p. 879) despite the lower oxidation state of Cl. [Pg.877]

Lower oxidation states are rather sparsely represented for Zr and Hf. Even for Ti they are readily oxidized to +4 but they are undoubtedly well defined and, whatever arguments may be advanced against applying the description to Sc, there is no doubt that Ti is a transition metal . In aqueous solution Ti can be prepared by reduction of Ti, either with Zn and dilute acid or electrolytically, and it exists in dilute acids as the violet, octahedral [Ti(H20)6] + ion (p. 970). Although this is subject to a certain amount of hydrolysis, normal salts such as halides and sulfates can be separated. Zr and are known mainly as the trihalides or their derivatives and have no aqueous chemistry since they reduce water. Table 21.2 (p. 960) gives the oxidation states and stereochemistries found in the complexes of Ti, Zr and Hf along with illustrative examples. (See also pp. 1281-2.)... [Pg.958]

Although the chemistry of zirconium in its lower oxidation states is still relatively unexplored, it is developing. Examples which offer the possibility of further exploitation include the blue, paramagnetic zirconium(III) compound 32) [L2Zr(/r-Cl)2ZrL2] L = C5H3(SiMe3)2-l,3, and the sandwich and half-sandwich compounds derived from cycloheptatriene red... [Pg.974]

The heavier metal tantalum is distinctly less inclined than niobium to form oxides in lower oxidation states. The rutile phase TaOz is known but has not been studied, and a cubic rock-salt-type phase TaO with a narrow homogeneity range has also been reported but not yet fully characterized. TazOs has two well-established polymorphs which have a reversible transition temperature at 1355°C but the detailed structure of these phases is too complex to be discussed here. [Pg.983]


See other pages where Lower Oxidation State is mentioned: [Pg.210]    [Pg.249]    [Pg.265]    [Pg.318]    [Pg.345]    [Pg.348]    [Pg.396]    [Pg.363]    [Pg.377]    [Pg.405]    [Pg.88]    [Pg.220]    [Pg.257]    [Pg.433]    [Pg.92]    [Pg.176]    [Pg.199]    [Pg.163]    [Pg.35]    [Pg.317]    [Pg.331]    [Pg.108]    [Pg.839]    [Pg.88]    [Pg.227]    [Pg.437]    [Pg.437]    [Pg.767]    [Pg.821]    [Pg.971]    [Pg.979]   
See also in sourсe #XX -- [ Pg.1137 ]

See also in sourсe #XX -- [ Pg.562 ]




SEARCH



State lower oxidation states

© 2024 chempedia.info