Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis infrared

Quantitative analysis, infrared, 250 Quantitative presentation of data, 14 Quantum mechanics, 259, 260 and the hydrogen atom, 259 Quantum number, 260 and hydrogen atom, 260 and orbitals, 261 principal, 260... [Pg.464]

I This formula shows that if quantitative analysis in the infrared is to be possible, it is necessary to know the coefficients a( i ), therefore, either to have the pure substance, or to be able to obtain them from the literature... [Pg.60]

The external reflection of infrared radiation can be used to characterize the thickness and orientation of adsorbates on metal surfaces. Buontempo and Rice [153-155] have recently extended this technique to molecules at dielectric surfaces, including Langmuir monolayers at the air-water interface. Analysis of the dichroic ratio, the ratio of reflectivity parallel to the plane of incidence (p-polarization) to that perpendicular to it (.r-polarization) allows evaluation of the molecular orientation in terms of a tilt angle and rotation around the backbone [153]. An example of the p-polarized reflection spectrum for stearyl alcohol is shown in Fig. IV-13. Unfortunately, quantitative analysis of the experimental measurements of the antisymmetric CH2 stretch for heneicosanol [153,155] stearly alcohol [154] and tetracosanoic [156] monolayers is made difflcult by the scatter in the IR peak heights. [Pg.127]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

The value of infrared spectra for identifying substances, for verifying purity, and for quantitative analysis rivals their usefulness in learning molecular structure. The infrared spectrum is as important as the melting point for characterizing a pure substance. Thus infrared spectroscopy has become an important addition to the many techniques used by the chemist. [Pg.249]

Standard Practices for Infrared, Multivariate, Quantitative Analysis", ASTM E1655-97. [Pg.191]

In the identification of different polymorphs in polymers the FTIR technique presents, with respect to the diffraction techniques, the advantage of easier and more rapid measurements. In particular, the high speed of the measurements allows to study the polymorphic behavior under dynamic conditions. As an example let us recall the study of the transition from the a toward the P form of PBT induced by tensile stresses, evaluated by quantitative analysis of the infrared spectra [83],... [Pg.207]

D.M. Haaland, Multivariate Calibration Methods Applied to the Quantitative Analysis of Infrared Spectra, Chapter I in Computer-Enhanced Analytical Spectroscopy, Volume 3", edited by P.C. Jurs. Plenum Press, New York, 1992. [Pg.381]

Samola and Urleb [15] reported qualitative and quantitative analysis of OTC using near-infrared (NIR) spectroscopy. Multivariate calibration was performed on NIR spectral data using principle component analysis (PCA), PLS-1, and PCR. [Pg.103]

The phase composition of glycine crystal forms during the drying step of a wet granulation process has been studied, and a model developed for the phase conversion reactions [88], X-ray powder diffraction was used for qualitative analysis, and near-infrared spectroscopy for quantitative analysis. It was shown that when glycine was wet granulated with microcrystalline cellulose, the more rapidly the granulation... [Pg.274]

Cahn, F. and S. Compton, Multivariate Calibration of Infrared Spectra for Quantitative Analysis Using Designed Experiments , Applied Spectroscopy, 42 865-872 (July, 1988). [Pg.147]

The thermal electron-transfer (ET) via the charge-transfer (CT) equilibrium depicted in equation (86) is established by temperature dependent (UV-vis) spectral studies. For example, an equimolar mixture of hydroquinone ether MA and NO + salt at low temperatures (—78°C) immediately forms the purple [MA, NO+] charge-transfer complex (lmax = 360 nm). However, upon warming the solution an orange-red color of the MA+ cation radical (Amax = 518 nm) develops, and the intensity increases with increasing temperature. Moreover, the identity of liberated NO is confirmed by the quantitative analysis of the head gas with a diagnostic N—O stretching band at 1876 cm -1 in the infrared... [Pg.288]

Quantitative Analysis. Sampling Procedures. Near Infrared Spectrometry. Applications of Infrared Spectrometry. [Pg.10]

Very widespread use, largely for the identification and structural analysis of organic materials useful for quantitative analysis but less widely used than UV and visible spectrometry. Near infrared region used increasingly for industrial quality control. [Pg.378]

Most cells used in infrared spectrometry have sodium chloride windows and the path length is likely to vary with use because of corrosion. For quantitative work, therefore, the same cell should be used for samples and standards. In general, quantitative analysis in the infrared region of the spectrum is not practised as widely as in the ultraviolet and visible regions, partly because of the additional care necessary to obtain reliable results and partly because the technique is generally considered to be less sensitive and less precise a precision of 3-8% can be expected. [Pg.392]

A feature of this analytical scheme is the marked reliance on infrared spectrometry and titrimetry. The former is particularly applicable to the qualitative characterization of unknown organic materials whilst titrimetry provides a rapid, precise and cheap means of quantitative analysis. The routine titrimetric determination of water, total acid (acid number) and total base (base number) forms a significant proportion of the work load in some analytical laboratories. It is instructive to consider how other techniques might have been applied to the solution of this particular problem, e.g. NMR spectrometry and chromatography. [Pg.511]

The pharmaceutical industry comprises the largest segment, roughly 15 to 20%, of the infrared (IR) market. Modern mid-infrared instrumentation consists almost exclusively of Fourier transform (FT) instruments. Because of its ability to identify molecular species, FT-IR is routinely used as an identification assay for raw materials, intermediates, drug substances, and excipients. However, the traditional IR sample preparation techniques such as alkali halide disks, mulls, and thin films, are time-consuming and not always adequate for quantitative analysis. [Pg.266]

In order to perform qualitative and quantitative analysis of the column effluent, a detector is required. Since the column effluent is often very low mass (ng) and is moving at high velocity (50-100 cm/s for capillary columns), the detector must be highly sensitive and have a fast response time. In the development of GC, these requirements meant that detectors were custom-built they are not generally used in other analytical instruments, except for spectroscopic detectors such as mass and infrared spectrometry. The most common detectors are flame ionization, which is sensitive to carbon-containing compounds and thermal conductivity which is universal. Among spectroscopic detectors, mass spectrometry is by far the most common. [Pg.468]

Instrumentation. Fourier transform infrared (FUR) spectra were recorded on a Nicolet 5DX using standard techniques. Spectra were measured from various sample supports, including KBR pellets, free polymer films and films cast on NaCl windows. Spectra for quantitative analysis were recorded in the absorbance mode. The height of the 639 cm 1 absorbance was measured after the spectrum was expanded or contracted such that the 829 cm 1 absorbance was a constant height. In some spectra an artifact due to instrumental response appeared near 2300 cm 1. [Pg.281]

An important tool for the fast characterization of intermediates and products in solution-phase synthesis are vibrational spectroscopic techniques such as Fourier transform infrared (FTIR) or Raman spectroscopy. These concepts have also been successfully applied to solid-phase organic chemistry. A single bead often suffices to acquire vibrational spectra that allow for qualitative and quantitative analysis of reaction products,3 reaction kinetics,4 or for decoding combinatorial libraries.5... [Pg.166]

When a solution is tested, both analyte and solvent absorption bands will be present in the spectrum, and identification, if that is the purpose of the experiment, is hindered. Some solvents have rather simple IR spectra and are thus considered more desirable as solvents for qualitative analysis. Examples are carbon tetrachloride (CC14, only C-Cl bonds), choloroform (CHC13), and methylene chloride (CH2C12). The infrared spectra of carbon tetrachloride and methylene chloride are shown in Figure 8.21. There is a problem with toxicity with these solvents, however. For quantitative analysis, such absorption band interference is less of a problem because one needs only to have a single absorption band of the analyte isolated from the other bands. This one band can be the source of the data for the standard curve since the peak absorption increases with increasing concentration (see Section 8.11 and Experiment 25). See Workplace Scene 8.2. [Pg.223]

The most straightforward method for analyzing a solid material by infrared spectrometry is to dissolve it in a suitable solvent and then to measure this solution using a liquid sampling cell such as one of the several described in Section 8.8. Thus it becomes a liquid sampling problem, the experimental details of which have already been discussed (Section 8.8). It is the only method of solid sampling suitable for quantitative analysis because it is the only one that has a defined and reproduced pathlength. [Pg.225]

Quantitative analysis procedures using infrared spectrometry utilize Beer s law. Thus only sampling cells with a constant pathlength can be used. Once the percent transmittance or absorbance measurements are made, the data reduction procedures are identical with those outlined in Chapter 7 (preparation of standard curve, etc.). [Pg.233]

Discussion Isopropyl alcohol exhibits an infrared absorption peak at 817 cm-1. This peak is well isolated from any other peak due to either the analyte or toluene, the solvent. Thus, this peak is appropriate for quantitative analysis of isopropyl alcohol dissolved in toluene. Your instructor may ask you to disassemble and reassemble the cell so as to have the appropriate spacer in place. [Pg.236]

Schneider JF, Schneider KR, Spiro SE, et al. 1991. Evaluation of gas chromatography/matrix isolation-infrared spectroscopy for the quantitative analysis of environmental samples. Applied Spectroscopy 45 566-571. [Pg.187]

Experimental Profile of Infrared Spectroscopy Quantitative Analysis... [Pg.327]

Recently, introductory books about chemometrics have been published by R. G. Brereton, Chemometrics—Data Analysis for the Laboratory and Chemical Plant (Brereton 2006) and Applied Chemometrics for Scientists (Brereton 2007), and by M. Otto, Chemometrics—Statistics and Computer Application in Analytical Chemistry (Otto 2007). Dedicated to quantitative chemical analysis, especially using infrared spectroscopy data, are A User-Friendly Guide to Multivariate Calibration and Classification (Naes et al. 2004), Chemometric Techniques for Quantitative Analysis (Kramer 1998), Chemometrics A Practical Guide (Beebe et al. 1998), and Statistics and Chemometrics for Analytical Chemistry (Miller and Miller 2000). [Pg.20]

Lai YW, Kemsley EK, Wilson RH. 1995. Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chem 53 95-98. [Pg.217]

The American Society for Testing and Materials (ASTM), Standard practice for infrared, multivariate quantitative analysis. Practice E1655-94 (1995). ASTM Annual Book of Standards, West Conshohocken, 755-779, Vol. 03.06,... [Pg.194]

Molecular spectroscopic techniques have been widely used in pharmaceutical analysis for both qualitative (identification of chemical species) and quantitative purposes (determination of concentration of species in pharmaceutical preparations). In many cases, they constitute effective alternatives to chromatographic techniques as they provide results of comparable quality in a more simple and expeditious manner. The differential sensitivity and selectivity of spectroscopic techniques have so far dictated their specihc uses. While UV-vis spectroscopy has typically been used for quantitative analysis by virtue of its high sensitivity, infrared (IR) spectrometry has been employed mainly for the identihcation of chemical compounds on account of its high selectivity. The development and consolidation of spectroscopic techniques have been strongly influenced by additional factors such as the ease of sample preparation and the reproducibility of measurements, which have often dictated their use in quality control analyses of both raw materials and finished products. [Pg.463]

ASTM E1655-05. Standard practices for infrared, multivariate, quantitative analysis. In Annual Book of Standards, vol. 3.06, ASTM International, West Conshohocken, PA, 2005. [Pg.487]

A.D. Patel, P.E. Luner and M.S. Kemper, Quantitative analysis of polymorphs in binary and multi-component powder mixtures by near-infrared reflectance spectroscopy, Int. J. Pharm. 206, 63-74. Erratum in Int. J. Pharm., 212, 295 (2000). [Pg.491]


See other pages where Quantitative analysis infrared is mentioned: [Pg.18]    [Pg.18]    [Pg.59]    [Pg.62]    [Pg.453]    [Pg.200]    [Pg.154]    [Pg.416]    [Pg.418]    [Pg.17]    [Pg.497]    [Pg.208]    [Pg.40]    [Pg.316]    [Pg.393]    [Pg.267]    [Pg.45]    [Pg.379]    [Pg.47]   


SEARCH



Infrared analysis

Infrared quantitative

© 2024 chempedia.info