Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Near infrared region

For radiofrequency and microwave radiation there are detectors which can respond sufficiently quickly to the low frequencies (<100 GHz) involved and record the time domain specttum directly. For infrared, visible and ultraviolet radiation the frequencies involved are so high (>600 GHz) that this is no longer possible. Instead, an interferometer is used and the specttum is recorded in the length domain rather than the frequency domain. Because the technique has been used mostly in the far-, mid- and near-infrared regions of the spectmm the instmment used is usually called a Fourier transform infrared (FTIR) spectrometer although it can be modified to operate in the visible and ultraviolet regions. [Pg.55]

Absorption and Fluorescence Spectra. The absorption spectra of actinide and lanthanide ions in aqueous solution and in crystalline form contain narrow bands in the visible, near-ultraviolet, and near-infrared regions of the spectmm (13,14,17,24). Much evidence indicates that these bands arise from electronic transitions within the and bf shells in which the Af and hf configurations are preserved in the upper and lower states for a particular ion. [Pg.224]

Ai- 4-(bis[4-(phenylamino)phenyl]methylene)-2,5-cyclohexadien-l-ykdene -3-methyl-ben2eneaminesulfate [57877-94-8] (20) have been claimed as positive CCAs (65). The absorption spectra of the triaryknethane dyes can be extended into the near-infrared region. The use of triaryknethane dyes as infrared absorbers for optical information recording media (66) and as infrared color formers in carbonless copy paper has been claimed. [Pg.274]

In order to develop the dyes for these fields, characteristics of known dyes have been re-examined, and some anthraquinone dyes have been found usable. One example of use is in thermal-transfer recording where the sublimation properties of disperse dyes are appHed. Anthraquinone compounds have also been found to be usehil dichroic dyes for guest-host Hquid crystal displays when the substituents are properly selected to have high order parameters. These dichroic dyes can be used for polarizer films of LCD systems as well. Anthraquinone derivatives that absorb in the near-infrared region have also been discovered, which may be appHcable in semiconductor laser recording. [Pg.336]

Amorphous (vitreous) selenium, vacuum-deposited on an aluminum substrate such as a dmm or a plate, was the first photoconductor commercially used in xerography (6). It is highly photosensitive, but only to blue light (2). Its light absorption falls off rather rapidly above 550 nm. Because of the lack of photoresponse in the red or near infrared regions, selenium photoreceptors caimot be used in laser printers having He—Ne lasers (632.8 nm), or soHd-state lasers (680—830 nm). [Pg.130]

Photometric Moisture Analysis TTis analyzer reqiiires a light source, a filter wheel rotated by a synchronous motor, a sample cell, a detector to measure the light transmitted, and associated electronics. Water has two absorption bands in the near infrared region at 1400 and 1900 nm. This analyzer can measure moisture in liquid or gaseous samples at levels from 5 ppm up to 100 percent, depending on other chemical species in the sample. Response time is less than 1 s, and samples can be run up to 300°C and 400 psig. [Pg.766]

In the carotenoid radicals, the unpaired electron is highly delocalized over the conjugated polyene chromophore. This has a stabilizing effect and also allows subsequent reactions. The cation and anion radicals can be detected by their characteristic spectral properties, with intense absorption in the near-infrared region. [Pg.58]

Compounds 3 and 4 are claimed31,32 to exhibit good solubility, while 5 is stated33 to possess excellent light-resistance, However, to date, no similar product has been able to replace CVL in the marketplace. One further example of the flexibility of the synthetic route in Scheme 3 is the preparation of compound 6,34 which is reported to show light absorption in the near infrared region and is thus suitable for recordings readable by lasers. [Pg.101]

Introduction of an ethylene bridge between the maso-carbon atom and one of the diaminophenyl groups of a triarylmethane-type phthalide results in a considerable bathochromic shift, thus producing color formers exhibiting absorption in the near infrared region of the electromagnetic spectrum. [Pg.112]

Extension of conjugated double bond system at 2 - and/or 6 -positions makes it possible for fluoran compounds to have an absorption in the near infrared region up to 1200 nm. These include 2 -anilino-6-(4-anilinoanilino)-3 -methylfluoran (62),63 6 -[4-(4-anilinoanilino)anilino]-2 -chloro-3 -methylfluoran (63),7 6 -[4-(4-dimethylaminoanilino)anilino]-2 -methylflu-... [Pg.179]

The book is divided into seven chapters. Chapter 1 describes photo-chromic materials which have critical applications in memory technology. These compounds generally are activated by light. Chapter 2 covers leuco quinones which, in many cases, when oxidized, have their absorption maxima in the near-infrared region. Chapter 3 describes leuco dyes of a common group of compounds—oxazine, thiazine, and phenazines—that have found applications in color photography. Chapters 4-6 describe arylmethine-type compounds that can be triggered to dyes by common chemistry. Chapter 7 describes a special class of leuco dyes, namely, tetra-... [Pg.313]

There has been some interest in extending the absorption range of cyanine dyes to longer wavelengths into the near-infrared region of the spectrum. Consideration of the spectral data for thiazole derivatives 118-120 is of some interest in this respect. Cyanine dye 118 shows the characteristic visible absorption spectrum for a dye of this type, giving a... [Pg.106]

Yagi S, Hyodo Y, Matsumoto S, Takahashi N, Kono H, Nakazumi H (2000) Synthesis of novel unsymmetrical squarylium dyes absorbing in the near-infrared region. J Chem Soc Perkin Trans 599-603... [Pg.101]

Umezawa K, Nakamura Y, Makino H, Citterio D, Suzuki K (2008) Bright, color-tunable fluorescent dyes in the visible-near-infrared region. J Am Chem Soc 130 1550-1551... [Pg.185]

Kiyose K, Kojima H, Urano Y et al (2006) Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbo-cyanine chromophore. J Am Chem Soc 128 6548-6549... [Pg.261]


See other pages where Near infrared region is mentioned: [Pg.1119]    [Pg.2492]    [Pg.191]    [Pg.192]    [Pg.192]    [Pg.196]    [Pg.197]    [Pg.201]    [Pg.12]    [Pg.267]    [Pg.275]    [Pg.398]    [Pg.150]    [Pg.151]    [Pg.250]    [Pg.187]    [Pg.42]    [Pg.338]    [Pg.25]    [Pg.35]    [Pg.40]    [Pg.36]    [Pg.45]    [Pg.94]    [Pg.95]    [Pg.107]    [Pg.173]    [Pg.174]    [Pg.177]    [Pg.129]    [Pg.141]    [Pg.581]    [Pg.597]    [Pg.597]    [Pg.946]   
See also in sourсe #XX -- [ Pg.190 ]

See also in sourсe #XX -- [ Pg.25 ]

See also in sourсe #XX -- [ Pg.414 ]

See also in sourсe #XX -- [ Pg.27 , Pg.46 ]

See also in sourсe #XX -- [ Pg.311 ]

See also in sourсe #XX -- [ Pg.159 ]

See also in sourсe #XX -- [ Pg.3405 ]

See also in sourсe #XX -- [ Pg.47 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Near region

© 2024 chempedia.info