Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample preparation techniques

Samples suitable for electron microscopy, electron diffraction, and AFM analysis can be obtained by different [Pg.240]

When dealing with a substrate that cannot be melted (e.g., talc flakes, salts), a thin film of the polymer is solvent-cast on a glass slide. The crystals of the substrate [Pg.240]

if not all, samples analysed in forensic science by chromatography require some form of clean-up step for them to be suitable for analysis. With [Pg.59]

The quality of the results delivered by microscopy depends very much on the sample preparation step since, without great care being taken at this time, no condu-sions can be drawn on polymer blend morphology that are free from error and/or artifacts. The principal sample preparation routes used for characterizing polymer morphology by EM involve thin films, cut surfaces, fractured surfaces, and etched surfaces. [Pg.552]


Although on-line sample preparation cannot be regarded as being traditional multidimensional chromatography, the principles of the latter have been employed in the development of many on-line sample preparation techniques, including supercritical fluid extraction (SFE)-GC, SPME, thermal desorption and other on-line extraction methods. As with multidimensional chromatography, the principle is to obtain a portion of the required selectivity by using an additional separation device prior to the main analytical column. [Pg.427]

In the analysis of polymer surfaces and interfaces there has been tremendous progress in recent years. This is to a large extent due to the development of surface- and interface-sensitive analytical techniques which previously had not been applied to polymers. It is thus possible to achieve molecular resolution both for the free polymer surface and for buried interfaces between polymers. In addition, suitable sample preparation techniques are available and extremely homogeneous and smooth polymer thin films can be prepared. They may be put together to investigate the interface between polymers. [Pg.394]

As an alternative approach towards the above requirement, Somorjai introduced the method of electron lithography [119] which represents an advanced HIGHTECH sample preparation technique. The method ensures uniform particle size and spacing e.g. Pt particles of 25 nm size could be placed with 50 nm separation. This array showed a uniform activity similar to those measured on single crystal in ethylene hydrogenation. The only difficulty with the method is that the particle size is so far not small enough. Comprehensive reviews have been lined up for the effect of dispersion and its role in heterogeneous catalysis [23,124,125]. [Pg.90]

The 1970 s demonstrated a trend chemistry is going out of analytical chemistry . However, what was not used anymore up-ffont for analysis came bade in the form of sample preparation techniques. For example, lUPAC devoted as much attention as ever before, but now to the chemistry needed to prepare the sample for measurement and to avoid losses and contamination. [Pg.302]

Until this point, the sample preparation techniques under discussion have relied upon differences in polarity to separate the analyte and the sample matrix in contrast, ultraflltration and on-line dialysis rely upon differences in molecular size between the analyte and matrix components to effect a separation. In ultrafiltration, a centrifugal force is applied across a membrane filter which has a molecular weight cut-off intended to isolate the analyte from larger matrix components. Furusawa incorporated an ultrafiltration step into his separation of sulfadimethoxine from chicken tissue extracts. Some cleanup of the sample extract may be necessary prior to ultrafiltration, or the ultrafiltration membranes can become clogged and ineffective. Also, one must ensure that the choice of membrane filter for ultrafiltration is appropriate in terms of both the molecular weight cut-off and compatibility with the extraction solvent used. [Pg.310]

LC/MS/MS is the preferred means of detection, quantitation, and confirmation of sulfonylurea herbicides in biological and environmental matrices. Therefore, recommendations for establishing and optimizing LC/MS/MS analyses common to all matrices are given first, followed by specific rationales for methods and sample preparation techniques for plant, soil, and water matrices. [Pg.402]

The need to understand the fate of pesticides in the environment has necessitated the development of analytical methods for the determination of residues in environmental media. Adoption of methods utilizing instrumentation such as gas chro-matography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS), liquid chromatography/tandem mass spectrometry (LC/MS/MS), or enzyme-linked immunosorbent assay (ELISA) has allowed the detection of minute amounts of pesticides and their degradation products in environmental samples. Sample preparation techniques such as solid-phase extraction (SPE), accelerated solvent extraction (ASE), or solid-phase microextraction (SPME) have also been important in the development of more reliable and sensitive analytical methods. [Pg.605]

Sample preparation techniques vary depending on the analyte and the matrix. An advantage of immunoassays is that less sample preparation is often needed prior to analysis. Because the ELISA is conducted in an aqueous system, aqueous samples such as groundwater may be analyzed directly in the immunoassay or following dilution in a buffer solution. For soil, plant material or complex water samples (e.g., sewage effluent), the analyte must be extracted from the matrix. The extraction method must meet performance criteria such as recovery, reproducibility and ruggedness, and ultimately the analyte must be in a solution that is aqueous or in a water-miscible solvent. For chemical analytes such as pesticides, a simple extraction with methanol may be suitable. At the other extreme, multiple extractions, column cleanup and finally solvent exchange may be necessary to extract the analyte into a solution that is free of matrix interference. [Pg.630]

Third, the bulk of the items in Table 1 address method performance. These requirements must be satisfied on a substrate-by-substrate basis to address substrate-specific interferences. As discussed above, interferences are best dealt with by application of conventional sample preparation techniques use of blank substrate to account for background interferences is not permitted. The analyst must establish a limit of detection (LOD), the lowest standard concentration that yields a signal that can be differentiated from background, and an LOQ (the reader is referred to Brady for a discussion of different techniques used to determine the LOD for immunoassays). For example, analysis of a variety of corn fractions requires the generation of LOD and LOQ data for each fraction. Procedural recoveries must accompany each analytical set and be based on fresh fortification of substrate prior to extraction. Recovery samples serve to confirm that the extraction and cleanup procedures were conducted correctly for all samples in each set of analyses. Carrying control substrate through the analytical procedure is good practice if practicable. [Pg.722]

During the last few years, miniaturization has become a dominant trend in the analysis of low-level contaminants in food and environmental samples. This has resulted in a significant reduction in the volume of hazardous and expensive solvents. Typical examples of miniaturization in sample preparation techniques are micro liquid/liquid extractions (in-vial) and solvent-free techniques such as solid-phase microextraction (SPME). Combined with state-of-the-art analytical instrumentation, this trend has resulted in faster analyses, higher sample throughputs and lower solvent consumption, whilst maintaining or even increasing assay sensitivity. [Pg.728]

SFE of fruits and vegetables and meat products has been reported, but the sample preparation techniques necessary to obtain reproducible results are extremely time consuming. Solid absorbents such as Hydromatrix, Extrelut " anhydrous magnesium sulfate or absorbent polymers are required to control the level of water in the sample for the extraction of the nonpolar pesticides. Without the addition of Hydromatrix, nonpolar pesticides cannot penetrate the water barrier between the sample particles and the supercritical CO2. The sample is normally frozen and the addition of dry-ice may be required to reduce losses due to degradation and/or evaporation. Thorough reviews of the advantages and limitations of SFE in pesticide residues... [Pg.730]

From a technical standpoint, this article emphasizes recent advances in sample preparation and instrumentation. A brief history of modern sample preparation techniques is covered, together with the impact of modern instrumentation on water sample analysis. [Pg.818]

Current interest in supercritical fluid extraction as a sample preparation technique for chromatographic analysis is intense, in spite of it receiving very little tion until the mid-1980s. Although neglected by analytical cl Hsts, during the... [Pg.408]

Solubilizing all or part of a sample matrix by contacting with liquids is one of the most widely used sample preparation techniques for gases, vapors, liquids or solids. Additional selectivity is possible by distributing the sample between pairs of immiscible liquids in which the analyte and its matrix have different solubilities. Equipment requirements are generally very simple for solvent extraction techniques. Table 8.2 [4,10], and solutions are easy to manipulate, convenient to inject into chromatographic instruments, and even small volumes of liquids can be measured accurately. Solids can be recovered from volatile solvents by evaporation. Since relatively large solvent volumes are used in most extraction procedures, solvent impurities, contaminants, etc., are always a common cause for concern [65,66]. [Pg.891]

Table 1.13, which lists the main techniques used for polymer/additive analysis, allows some interesting observations. Classical extraction methods still score very high amongst sample preparation techniques on the other hand, not unexpectedly, inorganic analysis methods are not in frequent use for separation purposes... [Pg.15]

Analytical techniques for the quantitative determination of additives in polymers generally fall into two classes indirect (or destructive) and direct (or nondestructive). Destructive methods require an irreversible alteration to the sample so that the additive can be removed from the plastic material for subsequent detention. This chapter separates the additive wheat from the polymer chaff , and deals with sample preparation techniques for indirect analysis. [Pg.52]

In general, new sample preparation technologies are faster, more efficient and cost effective than traditional sample preparation techniques. They are also safer, more easily automated, use smaller amounts of sample and less organic solvent, provide better target analyte recovery with enhanced precision and accuracy. Attention to the sample preparation steps has also become an important consideration in reducing contamination. A useful general guide to sample preparation has been published [3]. A recent review on sample preparation methods for polymer/additive analysis is also available [4]. [Pg.52]

As scientists strive for ever lower detection limits, sample preparation techniques must inevitably continue to improve. Some future directions in sample preparation for chromatography can be delineated as follows ... [Pg.54]

It is the difficult task of the analytical chemist to select the sample preparation technique best-suited for the problem at hand. The more tools there are in the toolkit, the larger the chances of finding a sample preparation technique that offers the desired characteristics. The goal of any extraction technique is to obtain extraction efficiency for the analyte which meets the analytical requirements in the shortest possible time. In some analytical procedures little sample handling is needed [46-49]. [Pg.58]

Isolation of the products from complex matrixes (e.g. polymer and water, air, or soil) is often a demanding task. In the process of stability testing (10 days at 40 °C, 1 h at reflux temperature) of selected plastic additives (DEHA, DEHP and Irganox 1076) in EU aqueous simulants, the additive samples after exposure were simply extracted from the aqueous simulants with hexane [63]. A sonication step was necessary to ensure maximum extraction of control samples. Albertsson et al. developed several sample preparation techniques using headspace-GC-MS [64], LLE [65] and SPE [66-68]. A practical guide to LLE is available [3]. [Pg.60]

Table 3.4 summarises the main characteristics of a variety of sample preparation modes for in-polymer additive analysis. Table 3.5 is a short literature evaluation of various extraction techniques. Majors [91] has recently reviewed the changing role of extraction in preparation of solid samples. Vandenburg and Clifford [4] and others [6,91-95] have reviewed several sample preparation techniques, including polymer dissolution, LSE and SEE, microwave dissolution, ultra-sonication and accelerated solvent extraction. [Pg.62]

MAP makes use of physical phenomena that are fundamentally different compared to those applied in current sample preparation techniques. Previously, application of microwave energy as a heat source, as opposed to a resistive source of heating, was based upon the ability to heat selectively an extractant over a matrix. The fundamental principle behind MAP is just the opposite. It is based upon the fact that different chemical substances absorb microwave energy... [Pg.115]

Many of the classical techniques used in the preparation of samples for chromatography are labour-intensive, cumbersome, and prone to sample loss caused by multistep manual manipulations. During the past few years, miniaturisation has become a dominant trend in analytical chemistry. At the same time, work in GC and UPLC has focused on improved injection techniques and on increasing speed, sensitivity and efficiency. Separation times for both techniques are now measured in minutes. Miniaturised sample preparation techniques in combination with state-of-the-art analytical instrumentation result in faster analysis, higher sample throughput, lower solvent consumption, less manpower in sample preparation, while maintaining or even improving limits. [Pg.123]

Packed-bed SPE was introduced as a sample preparation technique in the early 1970s but did not start... [Pg.124]

Principles and Characteristics Solid-phase microextraction (SPME) is a patented microscale adsorp-tion/desorption technique developed by Pawliszyn et al. [525-531], which represents a recent development in sample preparation and sample concentration. In SPME analytes partition from a sample into a polymeric stationary phase that is thin-coated on a fused-silica rod (typically 1 cm x 100 p,m). Several configurations of SPME have been proposed including fibre, tubing, stirrer/fan, etc. SPME was introduced as a solvent-free sample preparation technique for GC. [Pg.129]

Solid-phase microextraction eliminates many of the drawbacks of other sample preparation techniques, such as headspace, purge and trap, LLE, SPE, or simultaneous distillation/extraction techniques, including excessive preparation time or extravagant use of high-purity organic solvents. SPME ranks amongst other solvent-free sample preparation methods, notably SBSE (Section 3.5.3) and PT (Section 4.2.2) which essentially operate at room temperature, and DHS (Section 4.2.2),... [Pg.132]

The main characteristics of the ideal extraction method are given in Table 3.47, which at the same time are also criteria for comparison of sample preparation techniques. It is unlikely that a unique best method can be defined, which is analyte and matrix independent. Extraction is affected by polymer functionality, molecular weight and cross-linking. Selective extraction of some additives is basically not possible. Hence, the goal of an ideal extraction would be the complete extraction of all additives from the polymer for subsequent chromatographic separation. [Pg.134]


See other pages where Sample preparation techniques is mentioned: [Pg.242]    [Pg.217]    [Pg.286]    [Pg.25]    [Pg.360]    [Pg.379]    [Pg.195]    [Pg.171]    [Pg.90]    [Pg.188]    [Pg.33]    [Pg.309]    [Pg.225]    [Pg.454]    [Pg.884]    [Pg.902]    [Pg.904]    [Pg.16]    [Pg.53]    [Pg.69]    [Pg.89]    [Pg.120]    [Pg.127]    [Pg.135]   
See also in sourсe #XX -- [ Pg.124 , Pg.125 , Pg.126 , Pg.127 , Pg.128 , Pg.129 , Pg.130 , Pg.131 , Pg.132 ]

See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Preparation techniques

Preparative techniques

Sampling techniques

Sampling techniques samples

© 2024 chempedia.info