Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Production of ethylene

An example of a parallel reaction system occurs in the production of ethylene oxide ... [Pg.19]

Much of the bromine output in the U.S. was used in the production of ethylene dibromide, a lead scavenger used in making gasoline antiknock compounds. Lead in gasoline, however, has been drastically reduced, due to environmental considerations. This will greatly affect future production of bromine. [Pg.98]

Almost any hydrocarbon can serve as a starting material for production of ethylene and propene Cracking of petroleum (Section 2 16) gives ethylene and propene by processes involving cleavage of carbon-carbon bonds of higher molecular weight hydrocarbons... [Pg.189]

Processes rendered obsolete by the propylene ammoxidation process (51) include the ethylene cyanohydrin process (52—54) practiced commercially by American Cyanamid and Union Carbide in the United States and by I. G. Farben in Germany. The process involved the production of ethylene cyanohydrin by the base-cataly2ed addition of HCN to ethylene oxide in the liquid phase at about 60°C. A typical base catalyst used in this step was diethylamine. This was followed by liquid-phase or vapor-phase dehydration of the cyanohydrin. The Hquid-phase dehydration was performed at about 200°C using alkah metal or alkaline earth metal salts of organic acids, primarily formates and magnesium carbonate. Vapor-phase dehydration was accomphshed over alumina at about 250°C. [Pg.183]

Chlorine reacts with saturated hydrocarbons either by substitution or by addition to form chlorinated hydrocarbons and HCl. Thus methanol or methane is chlorinated to produce CH Cl, which can be further chlorinated to form methylene chloride, chloroform, and carbon tetrachloride. Reaction of CI2 with unsaturated hydrocarbons results in the destmction of the double or triple bond. This is a very important reaction during the production of ethylene dichloride, which is an intermediate in the manufacture of vinyl chloride ... [Pg.510]

Since the early 1980s olefin plants in the United States were designed to have substantial flexibiHty to consume a wide range of feedstocks. Most of the flexibiHty to use various feedstocks is found in plants with associated refineries, where integrated olefins plants can optimize feedstocks using either gas Hquids or heavier refinery streams. Companies whose primary business is the production of ethylene derivatives, such as thermoplastics, tend to use ethane and propane feedstocks which minimize by-product streams and maximize ethylene production for their derivative plants. [Pg.171]

Although acetylene production in Japan and Eastern Europe is stiU based on the calcium carbide process, the large producers in the United States and Western Europe now rely on hydrocarbons as the feedstock. Now more than 80% of the acetylene produced in the United States and Western Europe is derived from hydrocarbons, mainly natural gas or as a coproduct in the production of ethylene. In Russia about 40% of the acetylene produced is from natural gas. [Pg.382]

As indicated in Table 4, large-scale recovery of natural gas Hquid (NGL) occurs in relatively few countries. This recovery is almost always associated with the production of ethylene (qv) by thermal cracking. Some propane also is used for cracking, but most of it is used as LPG, which usually contains butanes as well. Propane and ethane also are produced in significant amounts as by-products, along with methane, in various refinery processes, eg, catalytic cracking, cmde distillation, etc (see Petroleum). They either are burned as refinery fuel or are processed to produce LPG and/or cracking feedstock for ethylene production. [Pg.400]

The most important commercial use of ethane and propane is in the production of ethylene (qv) by way of high temperature (ca 1000 K) thermal cracking. In the United States, ca 60% of the ethylene is produced by thermal cracking of ethane or ethane/propane mixtures. Large ethylene plants have been built in Saudi Arabia, Iran, and England based on ethane recovery from natural gas in these locations. Ethane cracking units have been installed in AustraHa, Qatar, Romania, and Erance, among others. [Pg.400]

High density polyethylene (HDPE) is defined by ASTM D1248-84 as a product of ethylene polymerisation with a density of 0.940 g/cm or higher. This range includes both homopolymers of ethylene and its copolymers with small amounts of a-olefins. The first commercial processes for HDPE manufacture were developed in the early 1950s and utilised a variety of transition-metal polymerisation catalysts based on molybdenum (1), chromium (2,3), and titanium (4). Commercial production of HDPE was started in 1956 in the United States by Phillips Petroleum Company and in Europe by Hoechst (5). HDPE is one of the largest volume commodity plastics produced in the world, with a worldwide capacity in 1994 of over 14 x 10 t/yr and a 32% share of the total polyethylene production. [Pg.379]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]

Economic considerations in the 1990s favor recovering butadiene from by-products in the manufacture of ethylene. Butadiene is a by-product in the C4 streams from the cracking process. Depending on the feedstocks used in the production of ethylene, the yield of butadiene varies. Eor use in polymerization, the butadiene must be purified to 994-%. Cmde butadiene is separated from C and C components by distillation. Separation of butadiene from other C constituents is accomplished by salt complexing/solvent extraction. Among the solvents used commercially are acetonitrile, dimethyl acetamide, dimethylform amide, and /V-methylpyrrolidinone (13). Based on the available cmde C streams, the worldwide forecasted production is as follows 1995, 6,712,000 1996, 6,939,000 1997, 7,166,000 and 1998, 7,483,000 metric tons (14). As of January 1996, the 1995 actual total was 6,637,000 t. [Pg.494]

In the chemical industry, titanium is used in heat-exchanger tubing for salt production, in the production of ethylene glycol, ethylene oxide, propylene oxide, and terephthaHc acid, and in industrial wastewater treatment. Titanium is used in environments of aqueous chloride salts, eg, ZnCl2, NH4CI, CaCl2, and MgCl2 chlorine gas chlorinated hydrocarbons and nitric acid. [Pg.110]

Titanium tetraiodide can be prepared by direct combination of the elements at 150—200°C it can be made by reaction of gaseous hydrogen iodide with a solution of titanium tetrachloride in a suitable solvent and it can be purified by vacuum sublimation at 200°C. In the van Arkel method for the preparation of pure titanium metal, the sublimed tetraiodide is decomposed on a tungsten or titanium filament held at ca 1300°C (152). There are frequent hterature references to its use as a catalyst, eg, for the production of ethylene glycol from acetylene (153). [Pg.132]

Chlorinated by-products of ethylene oxychlorination typically include 1,1,2-trichloroethane chloral [75-87-6] (trichloroacetaldehyde) trichloroethylene [7901-6]-, 1,1-dichloroethane cis- and /n j -l,2-dichloroethylenes [156-59-2 and 156-60-5]-, 1,1-dichloroethylene [75-35-4] (vinyhdene chloride) 2-chloroethanol [107-07-3]-, ethyl chloride vinyl chloride mono-, di-, tri-, and tetrachloromethanes (methyl chloride [74-87-3], methylene chloride [75-09-2], chloroform, and carbon tetrachloride [56-23-5])-, and higher boiling compounds. The production of these compounds should be minimized to lower raw material costs, lessen the task of EDC purification, prevent fouling in the pyrolysis reactor, and minimize by-product handling and disposal. Of particular concern is chloral, because it polymerizes in the presence of strong acids. Chloral must be removed to prevent the formation of soflds which can foul and clog operating lines and controls (78). [Pg.418]

A large amount of BTX is obtained as a by-product of ethylene manufacture (see Ethylene). The amount produced strongly depends on the feed to the ethylene plant. This is illustrated in Table 3 for various feeds to a typical large scale plant producing 450,000 t/yr of ethylene (16). Note that only about 1—2% of the ethane/propane feeds end up as BTX and it is almost completely benzene and toluene. As the feed goes up in molecular weight, the yield of BTX increases from 4% with butane feed to about 10% with gas oils, and the BTX proportions go from 72 20 8 respectively, to 44 34 22 respectively. [Pg.310]

The principal sources of feedstocks in the United States are the decant oils from petroleum refining operations. These are clarified heavy distillates from the catalytic cracking of gas oils. About 95% of U.S. feedstock use is decant oil. Another source of feedstock is ethylene process tars obtained as the heavy byproducts from the production of ethylene by steam cracking of alkanes, naphthas, and gas oils. There is a wide use of these feedstocks in European production. European and Asian operations also use significant quantities of coal tars, creosote oils, and anthracene oils, the distillates from the high temperature coking of coal. European feedstock sources are 50% decant oils and 50% ethylene tars and creosote oils. [Pg.544]

Ethylene. Where ethylene is ia short supply and fermentation ethanol is made economically feasible, such as ia India and Bra2il, ethylene is manufactured by the vapor-phase dehydration of ethanol. The production of ethylene [74-85-1] from ethanol usiag naturally renewable resources is an active and useful alternative to the pyrolysis process based on nonrenewable petroleum. This route may make ethanol a significant raw material source for produciag other chemicals. [Pg.415]

Addition. Addition reactions of ethylene have considerable importance and lead to the production of ethylene dichloride, ethylene dibromide, and ethyl chloride by halogenation—hydrohalogenation ethylbenzene, ethyltoluene, and aluminum alkyls by alkylation a-olefms by oligomerization ethanol by hydration and propionaldehyde by hydroformylation. [Pg.433]

Ethanol to Ethylene. The economics of this process depend on the availabiUty and price of ethanol. High volume production of ethylene... [Pg.443]

In 1989, world capacity for the production of ethylene was approximately 58 x 10 t. The United States production capacity accounted for almost 30% of the world capacity, or approximately 17 x 10 t, followed by Western Europe with almost 26% or 15 x 10 t (116). [Pg.445]

Unsteady-State Direct Oxidation Process. Periodic iatermption of the feeds can be used to reduce the sharp temperature gradients associated with the conventional oxidation of ethylene over a silver catalyst (209). Steady and periodic operation of a packed-bed reactor has been iavestigated for the production of ethylene oxide (210). By periodically varyiag the inlet feed concentration of ethylene or oxygen, or both, considerable improvements ia the selectivity to ethylene oxide were claimed. [Pg.461]

Biological. Several recent patents have claimed the production of ethylene oxide from a wide variety of raw materials using enzymatic catalysts (221—224). However, no commercial production routes based on biological mechanisms have been proposed. [Pg.461]

United States production of ethylene oxide in 1990 was 2.86 x 10 metric tons. Approximately 16% of the United States ethylene (qv) production is consumed in ethylene oxidation, making ethylene oxide the second largest derivative of ethylene, surpassed only by polyethylene (see Olefin polymers). World ethylene oxide capacity is estimated by country in Table 11. Total world capacity in 1992 was ca 9.6 x 10 metric tons. [Pg.461]

Laminating resins have been offered by Akzo (Diacryl 101), Dow (Derakane Vinyl Esters) and Showa (Spilac). Typical of these is Diacryl 101, which is manufactured by esterification of the addition product of ethylene oxide to bis-phenol A with methacrylic acid. They exhibit lower curing shrinkage than the polyester laminating resins during cure. The structure of Diacryl 101 is... [Pg.419]

Consider the production of ethylene oxide by oxidation of ethylene with air or oxygen ... [Pg.1045]

The addition of maleic anhydride can occur by excitation of either dienone or the anhydride. It is tempting to ascribe the 4,5-adduct (264) to a reaction between the excited dienone (260) and unexcited maleic anhydride by analogy with the observed major products of ethylene addition [cf. (261), (262)]. The 6,7-adducts (265) and (266) would then imply that these cycloadditions proceed by way of excited maleic anhydride which adds preferentially to the more electron-rich y,5-double bond of the groundstate dienone. [Pg.347]

A. Akimoto and A. Yano, Production of ethylene copolymers with metallocene catalysts at high pressure and its properties, MetCon 94 Proceedings, USA, May 1994. [Pg.165]

Higher molecular weight hydrocarbons present in natural gases are important fuels as well as chemical feedstocks and are normally recovered as natural gas liquids. For example, ethane may be separated for use as a feedstock for steam cracking for the production of ethylene. Propane and butane are recovered from natural gas and sold as liquefied petroleum gas (LPG). Before natural gas is used it must be processed or treated to remove the impurities and to recover the heavier hydrocarbons (heavier than methane). The 1998 U.S. gas consumption was approximately 22.5 trillion ft. ... [Pg.2]

Ethylene is a constituent of refinery gases, especially those produced from catalytic cracking units. The main source for ethylene is the steam cracking of hydrocarbons (Chapter 3). Table 2-2 shows the world ethylene production by source until the year 2000. U.S. production of ethylene was approximately 51 billion lbs in 1997. ... [Pg.33]

Ethylene can be oxidized to a variety of useful chemicals. The oxidation products depend primarily on the catalyst used and the reaction conditions. Ethylene oxide is the most important oxidation product of ethylene. Acetaldehyde and vinyl acetate are also oxidation products obtained from ethylene under special catalytic conditions. [Pg.189]


See other pages where Production of ethylene is mentioned: [Pg.40]    [Pg.458]    [Pg.167]    [Pg.451]    [Pg.523]    [Pg.83]    [Pg.485]    [Pg.370]    [Pg.195]    [Pg.434]    [Pg.446]    [Pg.462]    [Pg.1126]    [Pg.215]    [Pg.551]    [Pg.99]    [Pg.62]    [Pg.169]   
See also in sourсe #XX -- [ Pg.222 ]

See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Commercial Production of Ethylene Oxide

Economics of ethylene production

Ethylene production

Guide for Analysis of Ethylene Product

Integration of Separate Ethanol and Ethylene Production Processes

Production of Acetaldehyde from Ethylene by the Wacker Process

Production of Ethylene Dichloride

Production of Ethylene from Renewable Feedstock

© 2024 chempedia.info