Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuels refinery

Residue (slurry) or clarified oil (CLO) used as refinery fuel or as a base in the manufacture of carbon black. [Pg.385]

Feedstocks are natural gas, refinery fuel gas, LPG and paraffinic naphthas. After elimination of CO2, the last traces of contaminants are converted to methane (methanation) or eliminated by adsorption on molecular sieves (PSA process). [Pg.391]

Partial Oxidation. It is often desirable to augment the supply of naturally occurring or by-product gaseous fuels or to produce gaseous fuels of well-defined composition and combustion characteristics (5). This is particularly tme in areas where the refinery fuel (natural gas) is in poor supply and/or where the manufacture of fuel gases, originally from coal and more recently from petroleum, has become well estabHshed. [Pg.74]

As indicated in Table 4, large-scale recovery of natural gas Hquid (NGL) occurs in relatively few countries. This recovery is almost always associated with the production of ethylene (qv) by thermal cracking. Some propane also is used for cracking, but most of it is used as LPG, which usually contains butanes as well. Propane and ethane also are produced in significant amounts as by-products, along with methane, in various refinery processes, eg, catalytic cracking, cmde distillation, etc (see Petroleum). They either are burned as refinery fuel or are processed to produce LPG and/or cracking feedstock for ethylene production. [Pg.400]

Fuel. Propylene has a net heating value of 45.8 MJ/kg (19,700 Btu/lb) and is often contained in refinery fuel-gas streams. However, propylene is diverted from streams for refinery fuel use in large quantities only when economics for other uses are unfavorable, or equipment for propylene recovery does not exist or is limited in capacity. Propylene is also contained in Hquid petroleum gas (LPG), but is limited to a maximum concentration of 5 vol % in certain grades (83) (see Liquefied PETROLEUM gas). [Pg.128]

The cat products become feed to other units, such as alkylation and polymerization plants. High boiling liquid products are used to make lubes, and the gas goes into the refinery fuel systems. Cat cracking feed stocks come from atmospherie and vacuum stills, phenol extraction plants, hydrotreaters, deasphalters and cokers. [Pg.13]

Because some hydrocracking occurs, Powerforming also produces saturated C to Q light hydrocarbons. The methane and ethane formed normally are consumed as refinery fuel. Propane and butane products are frequently marketed as LPG. The relative quantities of each of these products vary considerably with feed quality, operating conditions and octane severity. [Pg.48]

Methane Ethane -259 T -132T 1G1°C - 91°C Fuel gas Refinery fuel... [Pg.979]

The lean sponge oil enters the absorber on the top tray. The gas from the presaturator or from the primary absorber enters below the bottom tray. The rich sponge oil from the bottom is then returned to the main fractionator. The lean gas leaves the top of the absorber to an amine unit for H,S removal prior to entering the refinery fuel... [Pg.28]

Labor costs experience inflation just as do capital costs as Figure B.5 demonstrates. Raw materials and fuel costs are subject to considerable erratic fluctuations as demonstrated by oil and metals prices, which have rapidly risen and fallen several times over the last five decades. For example, Figure B.6 shows the changes in refinery fuel price index since 1955. Prediction of refinery fuel prices in the future is clearly much more difficult than predicting capital costs. [Pg.613]

Atmospheric and vacuum distillation units (Figures 4.3 and 4.4) are closed processes, and exposures are expected to be minimal. Both atmospheric distillation units and vacuum distillation units produce refinery fuel gas streams containing a mixture of light hydrocarbons, hydrogen sulfide, and ammonia. These streams are processed through gas treatment and sulfur recovery units to recover fuel gas and sulfur. Sulfur recovery creates emissions of ammonia, hydrogen sulfide, sulfur oxides, and nitrogen oxides. [Pg.93]

The numerous process heaters used in refineries to heat process streams or to generate steam (boilers) for heating or steam stripping can be potential sources of sulfur oxides (SO2, and SO3), nitrogen oxides (NO and NO2), carbon monoxide (CO), particulates, and hydrocarbons emissions. When operating properly and when burning cleaner fuels such as refinery fuel gas, fuel oil, or natural gas, these emissions are relatively low. If, however, combustion is not complete, or heaters are fired with refinery fuel pitch or residuals, emissions can be significant. [Pg.238]

Coke does not offer the same potential environmental issues as other petroleum products (Chapter 10 and above). It is used predominantly as a refinery fuel unless other uses for the production of a high-grade coke or carbon are desired. In the former case, the constituents of the coke that will release environmentally harmful gases such as nitrogen oxides, sulfur oxides, and particulate matter should be known. In addition, stockpiling coke on a site where it awaits use or transportation can lead to leachates as a result of rainfall (or acid rainfall) which are highly detrimental. In such a case, application of the toxicity characteristic leaching procedure... [Pg.294]

Sulfur is removed from a number of refinery process off-gas streams (sour gas) to meet the sulfur oxide emissions limits of the Clean Air Act and to recover salable elemental sulfur. Process off-gas streams, or sour gas, from the coker, catalytic cracking unit, hydrotreating units, and hydroprocessing units can contain high concentrations of hydrogen sulfide mixed with light refinery fuel gases. [Pg.307]

Usually when anything heavier chan ethane—or sometimes heavier than propane—is cracked, there is a furnace designed to handle the ethane recycle stream. The plant shown in Figure 5-4 shows three heavy liquid furnaces and one ethane furnace. Since the alternate use for ethane is usually refinery fuel, the economics often dictate recovery and cracking. [Pg.74]

The first serious notice of C4 hydrocarbons came with the development of refinery cracking processes. When catalytic cracking became popular, refiners were faced with disposing of a couple of thousand barrels per day of a stream containing butane, butylenes, and small amounts of butadiene. Their first thought was to burn it all as refinery fuel, but then they developed the alkylation process. With that, they could undo some of the molecule shatter that took place in the crackers and reassemble some of the smaller pieces as alkylate, a high-octane gasolinerblending component. [Pg.87]

Fuels are handled in both closed and open systems. Once crude oil reaches the refinery, it is typically held within an entirely closed system. Outside of the refinery, fuels can be openly exposed to the environment. Upon loading into tankers,barges, and storage containers, fuels may be exposed to the open environment. Also, after delivery and sale, fuels are often stored in tanks, containers, and cans for various lengths of time. During storage, exposure of the fuel to environmental contaminants is quite possible. [Pg.84]

A gas-phase alkylation over an alumina-supported BF3 catalyst developed by UOP (Alkar process)312,313 reduces the corrosion problems associated with liquid-phase alkylation processes. An advantage of this technology is that it utilizes very dilute (8-10%) ethylene streams, such as refinery fuel gases (cracked gas streams). At the same time, to properly support BF3 is difficult. [Pg.257]

Heavy oils and residua are those feedstocks that are less desirable for conversion to liquid fuels. However, the depletion of the reserves of conventional petroleum has brought about an interest in the conversion of the heavier feedstocks. It has also been realized that any degree of self-sufficiency would necessitate the use of heavy oil and bitumen. There also has been a concerted effort to focus on bottom-of-the-barrel processing in which residua are converted to distillate liquid fuels. In the past, such materials had more often been used for road asphalt and refinery fuel. [Pg.95]

The volatile products from the soaking drum enter the fractionator where the distillates are fractionated into desired product oil streams, including a heavy gas oil fraction. The cracked gas product is compressed and used as refinery fuel gas after sweetening. The cracked oil product after hydrotreating is used as fluid catalytic cracking or hydrocracker feedstock. The residuum is suitable for use as boiler fuel, road asphalt, binder for the coking industry, and as a feedstock for partial oxidation. [Pg.326]


See other pages where Fuels refinery is mentioned: [Pg.412]    [Pg.204]    [Pg.80]    [Pg.84]    [Pg.97]    [Pg.102]    [Pg.106]    [Pg.89]    [Pg.46]    [Pg.47]    [Pg.183]    [Pg.614]    [Pg.615]    [Pg.16]    [Pg.151]    [Pg.238]    [Pg.245]    [Pg.295]    [Pg.307]    [Pg.307]    [Pg.18]    [Pg.18]    [Pg.66]    [Pg.260]    [Pg.47]    [Pg.269]    [Pg.299]    [Pg.102]    [Pg.102]   
See also in sourсe #XX -- [ Pg.118 ]




SEARCH



A Fuels Products Refinery with Specialties

Fuel products refineries

Refineries

© 2024 chempedia.info