Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refining operations

In the manufacture of base oils, one of the refining operations is to extract with the aid of an appropriate solvent (furfural most often) the most aromatic fractions and the polar components. When free of solvent, the extracted aromatic fraction can eventually be refined, particularly to remove color or to thicken it, or still further, to fractionate it. The term, aromatic extract is used in every case. [Pg.291]

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

Of the general formula, R - S — H, where R represents an aliphatic or cyclic radical, the thiols —also known as mercaptans— are acidic in behavior owing to their S—H functional group they are corrosive and malodorous. Their concentration in crude oils is very low if not zero, but they are created from other sulfur compounds during refining operations and show up in the light cuts, as illustrated in Table 8.6. [Pg.322]

The presence of thiophene and its derivatives in crude oils was detected in 1899, but until 1953, the date at which the methyl-thiophenes were identified in kerosene from Agha Jari, Iran crude oil, it was believed that they came from the degradation of sulfides during refining operations. Finally, their presence was no longer doubted after the identification of benzothiophenes and their derivatives (Table 8.9), and lately of naphthenobenzothiophenes in heavy cuts. [Pg.324]

Catalytic Processes. A second group of refining operations which contribute to gas production are the catalytic cracking processes, such as fluid-bed catalytic cracking, and other variants, in which heavy gas oils are converted into gas, naphthas, fuel oil, and coke (5). [Pg.74]

Open-Arc Furnaces. Most of the open-arc furnaces are used in melting and refining operations for steel and iron (Fig. 1). Although most furnaces have three electrodes and operate utilizing three-phase a-c power to be compatible with power transmission systems, d-c furnaces are becoming more common. Open-arc furnaces are also used in melting operations for nonferrous metals (particularly copper), slag, refractories, and other less volatile materials. [Pg.120]

Dressing. The impure lead bulhon, produced from any of the smelting processes, is cooled to remove dissolved copper prior to the refining operation. The operation is referred to as copper drossing, and is performed in one or two 250 t cast-iron ketdes. The process consists of skimming off the dross, stirring the lead, and reskimming. [Pg.41]

Pyrometa.llurgica.1 Methods. To prepare blast furnace bulhon for commercial sale, certain standards must be met either by the purity of the ores and concentrates smelted or by a series of refining procedures (r6—r8,r20,r21). These separated impurities have market value and the refining operations serve not only to purify the lead, but also to recover valuable by-products. [Pg.43]

The preparation, reduction, and refining operations are very much interdependent, and for a given metal must be considered as parts of a single flow sheet. To illustrate the principles of extractive metallurgy, however, it is convenient to discuss the various operations separately. [Pg.164]

Refining Processes. AH the reduction processes yield an impure metal containing some of the minor elements present in the concentrate, eg, cadmium in 2inc, or some elements introduced during the smelting process, eg, carbon in pig iron. These impurities must be removed from the cmde metal in order to meet specifications for use. Refining operations may be classified according to the kind of phases involved in the process, ie, separation of a vapor from a Hquid or soHd, separation of a soHd from a Hquid, or transfer between two Hquid phases. In addition, they may be characterized by whether or not they involve oxidation—reduction reactions. [Pg.169]

Naphthenic acid corrosion has been a problem ia petroleum-refining operations siace the early 1900s. Naphthenic acid corrosion data have been reported for various materials of constmction (16), and correlations have been found relating corrosion rates to temperature and total acid number (17). Refineries processing highly naphthenic cmdes must use steel alloys 316 stainless steel [11107-04-3] is the material of choice. Conversely, naphthenic acid derivatives find use as corrosion inhibitors ia oil-weU and petroleum refinery appHcations. [Pg.510]

Liquefied Petroleum Gas (LPG). Certain specific hydrocarbons, such as propane, butane, pentane, and their mixtures, exist in the gaseous state under atmospheric ambient conditions but can be converted to the Hquid state under conditions of moderate pressure at ambient temperature. This is termed Hquefied petroleum gas (LPG). Liquefied petroleum gas (qv) is a refinery product and the individual constituents, or light ends (Table 4), are produced during a variety of refining operations. [Pg.209]

Approximately 98% of the potassium recovered ia primary ore and natural brine refining operations is recovered as potassium chloride. The remaining 2% consists of potassium recovered from a variety of sources. Potassium produced from these sources occurs as potassium sulfate combiaed with magnesium sulfate. Prom a practical point of view, the basic raw material for ak of the potassium compounds discussed ia this article, except potassium tartrate, is potassium chloride. Physical properties of selected potassium compounds are Hsted ia Table 3, solubkities ia Table 4. [Pg.523]

The principal sources of feedstocks in the United States are the decant oils from petroleum refining operations. These are clarified heavy distillates from the catalytic cracking of gas oils. About 95% of U.S. feedstock use is decant oil. Another source of feedstock is ethylene process tars obtained as the heavy byproducts from the production of ethylene by steam cracking of alkanes, naphthas, and gas oils. There is a wide use of these feedstocks in European production. European and Asian operations also use significant quantities of coal tars, creosote oils, and anthracene oils, the distillates from the high temperature coking of coal. European feedstock sources are 50% decant oils and 50% ethylene tars and creosote oils. [Pg.544]

Ethyleneamines are used in certain petroleum refining operations as well. Eor example, an EDA solution of sodium 2-aminoethoxide is used to extract thiols from straight-mn petroleum distillates (314) a combination of substituted phenol and AEP are used as an antioxidant to control fouling during processing of a hydrocarbon (315) AEP is used to separate alkenes from thermally cracked petroleum products (316) and TEPA is used to separate carbon disulfide from a pyrolysis fraction from ethylene production (317). EDA and DETA are used in the preparation and reprocessing of certain... [Pg.48]

At the end of the zone-refining operation the zone reaches the right-hand end of the bar. The liquid at the left of the zone then begins to solidify so that in time the length of the zone decreases to zero. Derive expressions for the variations of both Cg and Cl with distance x in this final stage. Explain whether or not these expressions are likely to remain valid as the zone length tends to zero. [Pg.45]

Table 6 lists typical air emissions from petroleum refining operations. Where possible, typical quantities and concentrations of pollutants are reported. These should be considered very approximate figures since no two refinery operations are identical. However, they do provide a general idea of the quantities, flows, and levels of different types of priority pollutants handled by refinery operations. [Pg.102]

Table 6. Air Emission Outputs from Petroleum Refining Operations. Table 6. Air Emission Outputs from Petroleum Refining Operations.
Among the principal air emissions associated with petroleum refining operations, which ones pose the greatest health risks and why ... [Pg.147]

All refining operations may be classed as either conversion processes or separation processes. In the former, the feed undergoes a chemical reaction such as cracking, polymerization, or desulfurization. Separation processes take advantage of differences in physical properties to split the feed into two or more different products. Distillation, the most common of all refinery separation processes, uses differences in boiling points to separate hydrocarbon mixtures. [Pg.70]

Raffinier-anlage, /. refining plant, refinery, -arbeit, /. refining operation. [Pg.355]

Even with direct access to the basic raw materials, the refiners were slow to enter the field. Eventually, in the years leading up to World War II, the refiners began to perceive how their refining operations could be supplemented by petrochemical manufacture. By the start of world War II, they were beginning to compete m earnest with the chemical industiy in petrochemical synthetics markets. Between 1929 and 1941, the byproduct refinery gases consumed by both the chemical and petroleum industries for the purpose of manufacturing chemicals more than doubled, from 38.6 million barrels to 83.4 million barrels. [Pg.947]

Between 1982 and 1997, the total number of U.S. refineries had declined from 300 to 164 operating companies. This contraction was due for the most part to the closing down of the smaller refining operations, i.e., refineries with less than 50,000 barrels of crude oil per day (BPD) capacity. Wliile the smaller refineries still generally account for up to half of all U.S. facilities, in aggregate they control barely 14 percent of total U.S. crude refining capacity. [Pg.987]

In refining operations, crude oils are subjected to fractional distillation by which they are separated into different fractions according to the boiling point range of the compounds and their end use or application (see Table 2-39). [Pg.300]

Naphthas obtained from cracking units generally contain variable amounts of olefins, higher ratios of aromatics, and branched paraffins. Due to presence of unsaturated compounds, they are less stable than straight-mn naphthas. On the other hand, the absence of olefins increases the stability of naphthas produced by hydrocracking units. In refining operations, however, it is customary to blend one type of naphtha with another to obtain a required product or feedstock. [Pg.43]


See other pages where Refining operations is mentioned: [Pg.241]    [Pg.343]    [Pg.286]    [Pg.130]    [Pg.133]    [Pg.145]    [Pg.52]    [Pg.348]    [Pg.495]    [Pg.321]    [Pg.4]    [Pg.522]    [Pg.537]    [Pg.332]    [Pg.44]    [Pg.45]    [Pg.124]    [Pg.107]    [Pg.130]    [Pg.163]    [Pg.89]    [Pg.988]    [Pg.1121]    [Pg.361]    [Pg.434]    [Pg.436]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



© 2024 chempedia.info