Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium naming

Wherever "sodium ions" are mentioned, the term must of course be replaced by "potassium ions". Measurement and calibration is carried out at the wavelength of potassium, namely 768 nm. [Pg.280]

Using a modulated photon beam and a detector to measure only ionization produced at the modulation frequency, Lee and Mahan were able to show from the phase shift involved that both (48) and (49) occur. The associative ionization reaction (48) was found in cesium to occur for absorbed photons whose energy was within 0.70 eV of the atomic ionization potential, that is, for the states of cesium in which the excited electron is in the 8P, 9P, lOP,. .. levels. However, reaction (49), which we call collisional electron release, is observed only for cesium atoms in the 12P, 13P, 14P,... levels, and thus has a threshold energy that lies only within about 0.2 eV from the atomic ionization potential. Similar results were observed for rubidium and potassium, namely that collisional electron release occurs in addition to associative ionization, but does so only for states of the atoms lying much closer to the ionization continum than is the case for the latter process. [Pg.282]

By the interaction of aleohols or glyeols with potassium iodide and 95 per eent. orthophosphoric aeid (the last named is prepared from the eommercial 85 per eent. aeid and phosphoric oxide), for example ... [Pg.272]

Ninhydrin (also named 1 2 3-triketoindane or 1 2 3-triketohydrindene hydrate) is prepared most simply from the inexpensive phthahc anhydride (I). The latter is condensed with acetic anhydride In the presence of potassium acetate to give phthalylacetlc acid (II) reaction of the latter with sodium methoxide in methanol yields 1 3-indanedionecarboxyhc acid, which is decomposed upon warming with dilute hydrochloric or sulphuric acid to indane-1 3-dione (or 1 3-diketohydrindene) (HI). Selenium dioxide oxidation of (III) afibrds indane-1 2 3-trione hydrate (ninhydrin) (IV). [Pg.993]

The last step in the synthesis of divinyl ether (used as an anesthetic under the name Vinethene) involves heating CICH2CH2OCH2CH2CI with potassium hydroxide Show how you could prepare the necessary starting material CICH2CH2OCH2CH2CI from ethylene... [Pg.698]

Chlorine from Potassium Hydroxide Manufacture. One of the coproducts during the electrolytic production of potassium hydroxide employing mercury and membrane ceHs is chlorine. The combined name plate capacity for caustic potash during 1988 totaled 325,000 t/yr and growth of U.S. demand was expected to be steady at 2% through 1990 (68). [Pg.503]

Properties. Other names for potassium bifluoride are potassium hydrogen difluoride and potassium acid fluoride. This white crystalline salt is a soft, waxy soHd. The crystal forms of potassium bifluoride are tetragonal and cubic (21). The bifluoride ion in KHF2 averages 0.2292 nm between fluoride... [Pg.230]

Seaweeds. The eadiest successful manufacture of iodine started in 1817 using certain varieties of seaweeds. The seaweed was dried, burned, and the ash lixiviated to obtain iodine and potassium and sodium salts. The first process used was known as the kelp, or native, process. The name kelp, initially apphed to the ash of the seaweed, has been extended to include the seaweed itself. About 20 t of fresh seaweed was used to produce 5 t of air-dried product containing a mean of 0.38 wt % iodine in the form of iodides of alkah metals. The ash obtained after burning the dried seaweed contains about 1.5 wt % iodine. Chemical separation of the iodine was performed by lixiviation of the burned kelp, followed by soHd-Hquid separation and water evaporation. After separating sodium and potassium chloride, and sodium carbonate, the mother Hquor containing iodine as iodide was treated with sulfuric acid and manganese dioxide to oxidize the iodide to free iodine, which was sublimed and condensed in earthenware pipes (57). [Pg.361]

Prussian Blue. Reaction of [Fe(CN)3] with an excess of aqueous h on(Ill) produces the finely divided, intensely blue precipitate Pmssian Blue [1403843-8] (tetrairon(Ill) tris(hexakiscyanoferrate)), Fe4[Fe(CN)3]. Pmssian Blue is identical to Turnbull s Blue, the name which originally was given to the material produced by reaction of [Fe(CN)3] with excess aqueous h on(Il). The soHd contains or has absorbed on its surface a large and variable number of water molecules, potassium ions (if present in the reaction), and h on(Ill) oxide. The h on(Il) centers are low spin and diamagnetic h on(Ill) centers are high spin. Variations of composition and properties result from variations in reaction conditions. Rapid precipitation in the presence of potassium ion affords a colloidal suspension of Pmssian Blue [25869-98-1] which has the approximate composition KFe[Fe(CN)3]. Pmssian Blue compounds are used as pigments in inks and paints and its formation on sensitized paper is utilized in the production of blueprints. [Pg.435]

The anainoacridines, tacrine (19) and its 1-hydroxy metaboUte, velnacrine (20), are reversible inhibitors of AChE. Tacrine was synthesi2ed in the 1940s and has been used clinically for the treatment of myasthenia gravis and tardive dyskinesia (115). Placebo-controUed studies have indicated modest efficacy of tacrine to treat AD dementia (122,123) and in 1993 the dmg was recommended for approval by the PDA under the trade name Cognex. Tacrine (19) has been shown to interact with sites other than AChE, such as potassium channels (124) and muscarinic receptors. However, these interactions are comparatively weak and are not thought to contribute to the biological activity of the dmg at therapeutic levels (115). [Pg.98]

In the days of alchemy and the phlogiston theory, no system of nomenclature that would be considered logical ia the 1990s was possible. Names were not based on composition, but on historical association, eg, Glauber s salt for sodium sulfate decahydrate and Epsom salt for magnesium sulfate physical characteristics, eg, spirit of wiae for ethanol, oil of vitriol for sulfuric acid, butter of antimony for antimony trichloride, Hver of sulfur for potassium sulfide, and cream of tartar for potassium hydrogen tartrate or physiological behavior, eg, caustic soda for sodium hydroxide. Some of these common or trivial names persist, especially ia the nonchemical Hterature. Such names were a necessity at the time they were iatroduced because the concept of molecular stmcture had not been developed, and even elemental composition was incomplete or iadeterminate for many substances. [Pg.115]

The potassium or calcium salt form of oxaUc acid is distributed widely ia the plant kingdom. Its name is derived from the Greek o>ys, meaning sharp or acidic, referring to the acidity common ia the foflage of certain plants (notably Oxalis and Mmex) from which it was first isolated. Other plants ia which oxahc acid is found are spinach, rhubarb, etc. Oxahc acid is a product of metabohsm of fungi or bacteria and also occurs ia human and animal urine the calcium salt is a principal constituent of kidney stones. [Pg.455]

Potassium [7440-09-7] K, is the third, element ia the aLkaU metal series. The name designation for the element is derived from potash, a potassium mineral the symbol from the German name kalium, which comes from the Arabic qili, a plant. The ashes of these plants al qili) were the historical source of potash for preparing fertilisers (qv) or gun powder. Potassium ions, essential to plants and animals, play a key role in carbohydrate metaboHsm in plants. In animals, potassium ions promote glycolysis, Hpolysis, tissue respiration, and the synthesis of proteins (qv) and acetylcholine. Potassium ions are also beheved to function in regulating blood pressure. [Pg.515]

Sodium ethoxide was the first metal alkoxide described in 1837 (1). The alkoxides of many transition metals were developed after World War II (2—5). Today some alkoxides, including those of sodium, potassium, magnesium, aluminum, zirconium, and titanium, are commercially important. The name metal alkoxides is preferred, although metal alcoholates is also used. [Pg.21]

Dry basis natural mbber compound recipe, in part by wt high ammonia natural latex mbber concentrate, 100.0 potassium hydroxide, 0.5 Nacconal 90F (alkylarenesulfonate (AHied Chemical Co.)), 1.0 zinc oxide, 3.0 sulfur, 1.0 ZMBT, 1.0 zinc diethyldithiocarbamate (ZEDC) (trade names Ethazate (Uniroyal, Inc.), Ethyl Zimate (R. T. Vanderbilt), 0.3 antioxidant, as indicated. Wet-basis natural mbber compound recipe, in parts by wt natural latex (NC 356), 167.9 potassium hydroxide, 2.5 Nacconal 90F, 5.0 zinc oxide, 5.45 sulfur, 1.65 ZMBT, 2.0 ZEDC, 2.0 antioxidant, as indicated. AH films poured from freshly mixed compounds, dried overnight in place, then lifted and dried 1 h in air at 50°C before curing. [Pg.256]

Acesulfame-K. Acesulfame-K [55589-62-3] (4), the potassium salt of acesulfame [33665-90-6] (6-methyl-l,2,3-oxathiaziQ-4(3ff)-one 2,2-dioxide), is a sweetener that resembles saccharin in stmcture and taste profile. 5,6-Dimethyl-l,2,3-oxathiazine-4(3ff)-one 2,2-dioxide, the first of many sweet compounds belonging to the dihydrooxathia2inone dioxide class, was discovered accidentally in 1967 (63). From these many sweet compounds, acesulfame was chosen for commercialisation. To improve water solubiUty, the potassium salt was made. Acesulfame-K (trade name Sunette) was approved for dry product use in the United States in 1988 and in Canada in October, 1994. Later, it was approved by the FDA for additional food categories such as yogurts, frosen and refrigerated desserts, and baked goods. [Pg.276]

Uranium [7440-61-17 is a naturally occurring radioactive element with atomic number 92 and atomic mass 238.03. Uranium was discovered in a pitchblende [1317-75-5] specimen ia 1789 by M. H. Klaproth (1) who named the element uranit after the planet Uranus, which had been recendy discovered. For 50 years the material discovered by Klaproth was thought to be metallic uranium. Pnligot showed that the uranit discovered by Klaproth was really uranium dioxide [1344-57-6] UO2, and obtained the tme elemental uranium as a black powder in 1841 by reduction of UCl [10026-10-5] with potassium (2). [Pg.313]

Polyether Polyols. Polyether polyols are addition products derived from cyclic ethers (Table 4). The alkylene oxide polymerisation is usually initiated by alkah hydroxides, especially potassium hydroxide. In the base-catalysed polymerisation of propylene oxide, some rearrangement occurs to give aHyl alcohol. Further reaction of aHyl alcohol with propylene oxide produces a monofunctional alcohol. Therefore, polyether polyols derived from propylene oxide are not truly diftmctional. By using sine hexacyano cobaltate as catalyst, a more diftmctional polyol is obtained (20). Olin has introduced the diftmctional polyether polyols under the trade name POLY-L. Trichlorobutylene oxide-derived polyether polyols are useful as reactive fire retardants. Poly(tetramethylene glycol) (PTMG) is produced in the acid-catalysed homopolymerisation of tetrahydrofuran. Copolymers derived from tetrahydrofuran and ethylene oxide are also produced. [Pg.347]

Sodium and Potassium Benzoate. These salts are available in grades meeting the specifications of the 25ationalVormulary (18) and the Vood Chemicals Codex (19) (Table 7). Sodium benzoate [532-32-1] is produced by the neutralization of benzoic acid with caustic soda and/or soda ash. The resulting solution is then treated to remove trace impurities as weU as color bodies and then dried in steam heated double dmm dryers. The product removed from the dryers is light and fluffy and in order to reduce shipping and storage space the sodium benzoate is normally compacted. It is then milled and classified into various product forms, the names of which often bear Httle relationship to the actual form of the product. [Pg.55]

Eor the many details of constmcting or interpreting stmctures and systematic names, the Hterature on nomenclature and indexing (6) can be consulted. Systematic nomenclature is illustrated by the Chemicaly hstracts name of the sodium iron(III) EHPG chelate sodium [[N,N -l,2-ethanediylbis[2-(2-hydroxyphenyl)glyciQatol]](4-)-N,N, 0,0, 0, 0 ]ferrate(l-) [16455-61-1], The ferrate anion (12) [20250-28-6] and the potassium salt [22569-56-8] are also Hsted ia Chemical Abstracts (7). [Pg.384]

The primary Cr—O bonded species is cbromium (VT) oxide, CrO, which is better known as chromic acid [1115-74-5], the commercial and common name. This compound also has the aliases chromic trioxide and chromic acid anhydride and shows some similarity to SO. The crystals consist of infinite chains of vertex-shared CrO tetrahedra and are obtained as an orange-red precipitate from the addition of sulfuric acid to the potassium or sodium dichromate(VI). Completely dry CrO is very dark red to red purple, but the compound is deflquescent and even traces of water give the normal mby red color. Cbromium (VT) oxide is a very powerful oxidi2er and contact with oxidi2able organic compounds may cause fires or explosions. [Pg.136]

A number of products are being marketed under the trade name POLYON. These include coated basic fertilizer materials, ie, urea, potassium nitrate, potassium sulfate, potassium chloride, ammonium sulfate, ammonium phosphate, and iron sulfate, in various particle sizes. Coatings weights on urea vary from 1.5 to 15%, depending on the release duration desired. Table 6 Hsts typical products. [Pg.137]

Lysol consists of a mixture of the three cresol isomers solubilized using a soap prepared from linseed oil and potassium hydroxide, to form a clear solution on dilution. Most vegetative pathogens, including mycobacteria, are killed in 15 minutes by 0.3—0.6% lysol. Lysol has a phenol coefficient of 2. Bacterial spores are very resistant. Lysol is also the name of a proprietary product, the formula of which has changed over the years other phenols have been substituted for the cresols. [Pg.126]

Polyetheretherketone Resin (PEEK). The resia was commercialized as Victrex PEEK by Imperial Chemical Industries, Ltd. (ICl) ia the late 1970s and by Amoco Chemicals Corp. ia the middle 1980s under the trade name Kadel. It is produced by both companies ia the United States. Kadel is beheved made by the displacement reaction of 4,4 -difluorodiphenyl ketone by the potassium salt of hydroquinone ... [Pg.275]

The chemistry of ethyl alcohol is largely that of the hydroxyl group, namely, reactions of dehydration, dehydrogenation, oxidation, and esterification. The hydrogen atom of the hydroxyl group can be replaced by an active metal, such as sodium, potassium, and calcium, to form a metal ethoxide (ethylate) with the evolution of hydrogen gas (see Alkoxides, metal). [Pg.402]


See other pages where Potassium naming is mentioned: [Pg.268]    [Pg.130]    [Pg.445]    [Pg.461]    [Pg.856]    [Pg.915]    [Pg.55]    [Pg.194]    [Pg.15]    [Pg.221]    [Pg.223]    [Pg.14]    [Pg.114]    [Pg.117]    [Pg.14]    [Pg.315]    [Pg.286]    [Pg.323]    [Pg.426]    [Pg.81]    [Pg.146]    [Pg.184]    [Pg.198]    [Pg.137]    [Pg.166]    [Pg.325]   
See also in sourсe #XX -- [ Pg.273 ]




SEARCH



© 2024 chempedia.info