Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxahc acid

Saccharic acid. Use the filtrate A) from the above oxidation of lactose or, alternatively, employ the product obtained by evaporating 10 g. of glucose with 100 ml. of nitric acid, sp. gr. 1 15, until a syrupy residue remains and then dissolving in 30 ml. of water. Exactly neutralise at the boiling point with a concentrated solution of potassium carbonate, acidify with acetic acid, and concentrate again to a thick syrup. Upon the addition of 50 per cent, acetic acid, acid potassium saccharate sepa rates out. Filter at the pump and recrystaUise from a small quantity of hot water to remove the attendant oxahc acid. It is necessary to isolate the saccharic acid as the acid potassium salt since the acid is very soluble in water. The purity may be confirmed by conversion into the silver salt (Section 111,103) and determination of the silver content by ignition. [Pg.453]

Phytic acid (9), although restricted to a more narrow range of food products, mainly grains, complexes a broader spectmm of minerals than does oxahc acid. Decreased availabiUty of P is probably the most widely recognized result of excessive iatakes of phytic acid, yet Ca, Cu, Zn, Fe, and Mn are also complexed and rendered unavailable by this compound (47—49). Phytic acid has also been reported to reduce the activity of a-amylase and to decrease the activity of both proteolytic and Hpolytic enzymes (50). [Pg.478]

Of the water-soluble vitamins, intakes of nicotinic acid [59-67-6] on the order of 10 to 30 times the recommended daily allowance (RE)A) have been shown to cause flushing, headache, nausea, and moderate lowering of semm cholesterol with concurrent increases in semm glucose. Toxic levels of foHc acid [59-30-3] are ca 20 mg/d in infants, and probably approach 400 mg/d in adults. The body seems able to tolerate very large intakes of ascorbic acid [50-81-7] (vitamin C) without iH effect, but levels in excess of 9 g/d have been reported to cause increases in urinary oxaHc acid excretion. Urinary and blood uric acid also rise as a result of high intakes of ascorbic acid, and these factors may increase the tendency for formation of kidney or bladder stones. AH other water-soluble vitamins possess an even wider margin of safety and present no practical problem (82). [Pg.479]

Glycohc acid also undergoes reduction or hydrogenation with certain metals to form acetic acid, and oxidation by hydrogen peroxide ia the presence of ferrous salts to form glyoxylic acid [298-12A], HCOCOOH, and ia the presence of ferric salts ia neutral solution to form oxaHc acid, HOOCCOOH formic acid, HCOOH and Hberate CO2 and H2O. These reduction and oxidation reactions are not commercially significant. [Pg.516]

Oxahc acid was synthesi2ed for the first time ia 1776 by Scheele through the oxidation of sugar with nitric acid. Then, Wn h1er synthesi2ed it by the hydrolysis of cyanogen [460-19-5] ia 1824. [Pg.455]

The potassium or calcium salt form of oxaUc acid is distributed widely ia the plant kingdom. Its name is derived from the Greek o>ys, meaning sharp or acidic, referring to the acidity common ia the foflage of certain plants (notably Oxalis and Mmex) from which it was first isolated. Other plants ia which oxahc acid is found are spinach, rhubarb, etc. Oxahc acid is a product of metabohsm of fungi or bacteria and also occurs ia human and animal urine the calcium salt is a principal constituent of kidney stones. [Pg.455]

Oxahc acid is used in various industrial areas, such as textile manufacture and processing, metal surface treatments (qv), leather tanning, cobalt production, and separation and recovery of rare-earth elements. Substantial quantities of oxahc acid are also consumed in the production of agrochemicals, pharmaceuticals, and other chemical derivatives. [Pg.455]

The physical and thermochemical constants of anhydrous oxahc acid and oxahc acid dihydrate are summari2ed in Table 1. [Pg.455]

Oxahc acid reacts with various metals to form metal salts, which are quite important as the derivatives of oxahc acid. It also reacts easily with alcohols to give esters. Crystalline dimethyl oxalate is, for example, produced by the reaction of oxahc acid dihydrate and methanol under reflux for a few hours. When oxahc acid is treated with phosphoms pentachloride, oxalyl chloride, ClCOCOCl, is formed (6). [Pg.457]

Many industrial processes have been employed for the manufacture of oxahc acid since it was first synthesized. The following processes are in use worldwide oxidation of carbohydrates, the ethylene glycol process, the propylene process, the diaLkyl oxalate process, and the sodium formate process. [Pg.457]

Nitric acid oxidation is used where carbohydrates, ethylene glycol, and propylene are the starting materials. The diaLkyl oxalate process is the newest, where diaLkyl oxalate is synthesized from carbon monoxide and alcohol, then hydrolyzed to oxahc acid. This process has been developed by UBE Industries in Japan as a CO coupling technology in the course of exploring C-1 chemistry. [Pg.457]

The sodium formate process is comprised of six steps (/) the manufacture of sodium formate from carbon monoxide and sodium hydroxide, (2) manufacture of sodium oxalate by thermal dehydrogenation of sodium formate at 360°C, (J) manufacture of calcium oxalate (slurry), (4) recovery of sodium hydroxide, (5) decomposition of calcium oxalate where gypsum is produced as a by-product, and (6) purification of cmde oxahc acid. This process is no longer economical in the leading industrial countries. UBE Industries (Japan), for instance, once employed this process, but has been operating the newest diaLkyl oxalate process since 1978. The sodium formate process is, however, still used in China. [Pg.457]

Oxidation of Carbohydrates. Oxahc acid is prepared by the oxidation of carbohydrates (7—9), such as glucose, sucrose, starch, dextrin, molasses, etc, with nitric acid (qv). The choice of the carbohydrate raw material depends on availabihty, economics, and process operating characteristics. Among the various raw materials considered, com starch (or starch in general) and sugar are the most commonly available. Eor example, tapioka starch is the Brazihan raw material, and sugar is used in India. [Pg.457]

The oxidation of carbohydrates is the oldest method for oxahc acid manufacture. The reaction was discovered by Scheele in 1776, but was not successfully developed as a commercial process until the second quarter of the twentieth century. Technical advances in the manufacture of nitric acid, particularly in the recovery of nitrogen oxides in a form suitable for recycle, enabled its successful development. Thus 150 t of oxahc acid per month was produced from sugar by I. G. Earben (Germany) by the end of World War II. [Pg.457]

Monosaccharides such as glucose and fmctose are the most suitable as starting materials. When starch is used, it is first hydrolyzed with oxahc acid or sulfuric acid into a monosaccharide, mainly glucose. It is then oxidized with nitric acid in an approximately 50% sulfuric acid solution at 63—85°C in the presence of a mixed catalyst of vanadium pentoxide and iron(III) sulfate. [Pg.457]

The AUied process (Eig. 1) is a typical example of the oxidation of carbohydrates. However, AUied Corporation itself has stopped the production of oxahc acid. [Pg.457]

Oxahc acid manufacture via the oxidation of carbohydrates is stiU actively pursued, especially in China (10—12). In India, processes which produce sihca and oxahc acid have been developed (13,14). The raw materials include agricultural wastes, such as rice husks, nut shell flour, com cobs, baggase, straw, etc. [Pg.457]

Ethylene Glycol Process. Oxahc acid is also prepared by the nitric acid oxidation of ethylene glycol (15—21), and the process is basically the same as in the case of carbohydrates except for the absence of the hydrolyzer (see Eig. 1). In this process, ethylene glycol is oxidized in a mixture of... [Pg.457]

RhcJ)ne-Poulenc (France) developed a modified version of the process for making either oxaUc acid or lactic acid, or both, from propylene. In 1978, 65,000 t/yr of oxahc acid was produced worldwide by this process, although in the 1990s this process is operated only by RhcJ)ne-Poulenc. Oxidation reactions of the RhcJ)ne-Poulenc process are as follows. [Pg.458]

In the first step, propylene is introduced at 10—40°C into nitric acid, the concentration of which is kept at 50—75 wt % and molar ratio to propylene at 0.01—0.5, and converted into a-nitratolactic acid and lactic acid. a-Nitratolactic acid is oxidized by oxygen in the second step in the presence of a catalyst at 45—100°C to produce oxahc acid dihydrate. The overall yield based on propylene is greater than 90% and the conversion of propylene, 77.5%. The outhne of the process is shown in Figure 2. The RhcJ)ne-Poulenc process can be characterized by the coproduction of lactic acid. [Pg.458]

Diall l Oxalate Process. Oxahc acid is prepared by the hydrolysis of diesters of oxahc acid which are prepared by an oxidative CO coupling reaction. UBE Industries (Japan) commercialized this two-step process in 1978. This is the newest manufacturing process of oxahc acid. [Pg.458]

Dry oxahc acid is packed and sold in polyethylene-lined, multilayered 25-kg paper bags or in polyethylene-lined 300—600-kg PVC flexible containers. It should be stored in a cool, dry, ventilated place. For storage of its solutions at ordinary temperature, 316 stainless steel is often used as a constmction material. [Pg.461]

Oxahc acid is not flammable but its decomposition products, both formic acid and carbon monoxide, are toxic and flammable. Its dust and mist are irritating, especially under prolonged contact. Personnel who handle oxahc acid should wear mbber gloves, aprons, protection masks or goggles, etc, to avoid skin contact and inhalation. Adequate ventilation also should be provided in areas in which oxahc acid dust fumes are present. [Pg.461]

Because oxahc acid is toxic and corrosive, neither its crystals nor its solutions should be discarded to the environment without proper treatment. [Pg.461]

The common treatment methods are acidification, neutralization, and incineration. When oxahc acid is heated slightly in sulfuric acid, it is converted to carbon monoxide, carbon dioxide, and water. Reaction with acid potassium permanganate converts it to carbon dioxide. Neutralization with alkahes, such as caustic soda, yields soluble oxalates. Neutralization with lime gives practically insoluble calcium oxalate, which can be safely disposed of, for instance, by incineration. [Pg.461]

Leather Taiming. Oxahc acid is used as a pH modifier in leather tanning by tannin and basic chromium sulfate. It also functions as a bleaching agent for leather (qv). [Pg.462]

Marble Polishing. Oxahc acid is used for marble polishing especially in Italy. It not only removes iron veins by forming water-soluble iron oxalate, but also serves as a polishing auxihary. [Pg.462]

Millet Jelly Production. Starch powder is heated together with oxahc acid and hydrolyzed to produce millet jelly. Oxahc acid functions as a hydrolysis catalyst, and is removed from the product as calcium oxalate. This apphcation is carried out in Japan. [Pg.462]

Others. Oxahc acid is used for the production of cobalt, as a raw material of various agrochemicals and pharmaceuticals, for the manufacture of electronic materials (76—83), for the extraction of tungsten from ore (84), for the production of metal catalysts (85,86), as a polymerization initiator (87—89), and for the manufacture of zirconium (90) and beryhium oxide (91). [Pg.462]

Oxahc acid forms neutral and acid salts, as well as complex salts. [Pg.462]

Calcium Oxalate. The monohydrate [5794-28-5], CaC2 04-H2 0, mol wt 128.10,is of importance principally as an intermediate in oxahc acid manufacture and in analytical chemistry it is the form in which calcium is frequentiy quantitatively isolated. Its solubihty in water is very low, lower than that of the other aLkahne-earth oxalates. The approximate solubihties of this and several related salts are indicated in Table 6. [Pg.462]

Reduction Products. Glyoxyhc acid [298-12 ], HOOCCHO, mol wt 74.04, is produced as aqueous solution by the electrolytic reduction of oxahc acid. It is used for the manufacture of vanillin. [Pg.463]

Ozonation of Aromatics. Aromatic ring unsaturation is attacked much slower than olefinic double bonds, but behaves as if the double bonds in the classical Kekule stmctures really do exist. Thus, benzene yields three moles of glyoxal, which can be oxidized further to glyoxyUc acid and then to oxahc acid. Substituted aromatics give mixtures of aUphatic acids. Ring substituents such as amino, nitro, and sulfonate are cleaved during ozonation. [Pg.494]

There are occasions where the mud pH must be lowered such as after drilling fresh cement or overtreatment by one of the alkaline materials discussed. Organic acids that have been used for this purpose include acetic acid [64-19-7], citric acid [77-92-9], and oxaHc acid [144-62-7]. These materials are used infrequently. Inorganic additives used to lower pH levels include sodium bicarbonate [144-55-8] and sodium acid pyrophosphate [7758-16-9] (SAPP). Of the two, sodium bicarbonate is used the most by far. [Pg.181]

The reaction is completed after 6—8 h at 95°C volatiles, water, and some free phenol are removed by vacuum stripping up to 140—170°C. For resins requiring phenol in only trace amounts, such as epoxy hardeners, steam distillation or steam stripping may be used. Both water and free phenol affect the cure and final resin properties, which are monitored in routine quaHty control testing by gc. OxaHc acid (1—2 parts per 100 parts phenol) does not require neutralization because it decomposes to CO, CO2, and water furthermore, it produces milder reactions and low color. Sulfuric and sulfonic acids are strong catalysts and require neutralization with lime 0.1 parts of sulfuric acid per 100 parts of phenol are used. A continuous process for novolak resin production has been described (31,32). An alternative process for making novolaks without acid catalysis has also been reported (33), which uses a... [Pg.297]


See other pages where Oxahc acid is mentioned: [Pg.112]    [Pg.476]    [Pg.305]    [Pg.522]    [Pg.224]    [Pg.21]    [Pg.457]    [Pg.457]    [Pg.458]    [Pg.458]    [Pg.460]    [Pg.461]    [Pg.462]    [Pg.463]    [Pg.493]    [Pg.493]   
See also in sourсe #XX -- [ Pg.97 , Pg.375 ]




SEARCH



Oxahc

© 2024 chempedia.info