Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular stmcture

Most properties of linear polymers are controlled by two different factors. The chemical constitution of tire monomers detennines tire interaction strengtli between tire chains, tire interactions of tire polymer witli host molecules or witli interfaces. The monomer stmcture also detennines tire possible local confonnations of tire polymer chain. This relationship between the molecular stmcture and any interaction witli surrounding molecules is similar to tliat found for low-molecular-weight compounds. The second important parameter tliat controls polymer properties is tire molecular weight. Contrary to tire situation for low-molecular-weight compounds, it plays a fimdamental role in polymer behaviour. It detennines tire slow-mode dynamics and tire viscosity of polymers in solutions and in tire melt. These properties are of utmost importance in polymer rheology and condition tlieir processability. The mechanical properties, solubility and miscibility of different polymers also depend on tlieir molecular weights. [Pg.2514]

We are all familiar with tire tliree states of matter gases, liquids and solids. In tire 19tli century the liquid crystal state was discovered [1 and 2] tliis can be considered as tire fourtli state of matter [3].The essential features and properties of liquid crystal phases and tlieir relation to molecular stmcture are discussed here. Liquid crystals are encountered in liquid crystal displays (LCDs) in digital watches and otlier electronic equipment. Such applications are also considered later in tliis section. Surfactants and lipids fonn various types of liquid crystal phase but this is discussed in section C2.3. This section focuses on low-molecular-weight liquid crystals, polymer liquid crystals being discussed in tire previous section. [Pg.2542]

It is of particular interest to be able to correlate solubility and partitioning with the molecular stmcture of the surfactant and solute. Likes dissolve like is a well-wom plirase that appears applicable, as we see in microemulsion fonnation where reverse micelles solubilize water and nonnal micelles solubilize hydrocarbons. Surfactant interactions, geometrical factors and solute loading produce limitations, however. There appear to be no universal models for solubilization that are readily available and that rest on molecular stmcture. Correlations of homologous solutes in various micellar solutions have been reviewed by Nagarajan [52]. Some examples of solubilization, such as for polycyclic aromatics in dodecyl sulphonate micelles, are driven by hydrophobic... [Pg.2592]

Order and dense packing are relative in tire context of tliese systems and depend on tire point of view. Usually tire tenn order is used in connection witli translational symmetry in molecular stmctures, i.e. in a two-dimensional monolayer witli a crystal stmcture. Dense packing in organic layers is connected witli tire density of crystalline polyetliylene. [Pg.2624]

More recently Andrews and Juzeliunas [6, 7] developed a unified tlieory that embraces botli radiationless (Forster) and long-range radiative energy transfer. In otlier words tliis tlieory is valid over tire whole span of distances ranging from tliose which characterize molecular stmcture (nanometres) up to cosmic distances. It also addresses tire intennediate range where neitlier tire radiative nor tire Forster mechanism is fully valid. Below is tlieir expression for tire rate of pairwise energy transfer w from donor to acceptor, applicable to transfer in systems where tire donor and acceptor are embedded in a transparent medium of refractive index ... [Pg.3018]

Laser spectroscopy is such a wide subject, with many ingenious experiments using one or two CW or pulsed lasers to study atomic or molecular stmcture or dynamics, that it is difficult to do justice to it at the level at which Modern Spectroscopy is aimed. In this edition 1 have expanded the section on supersonic jet spectroscopy, which is an extremely important and wide-ranging field. [Pg.469]

The locations of the tietriangle and biaodal curves ia the phase diagram depead oa the molecular stmctures of the amphiphile and oil, on the concentration of cosurfactant and/or electrolyte if either of these components is added, and on the temperature (and, especially for compressible oils such as propane or carbon dioxide, on the pressure (29,30)). Unfortunately for the laboratory worker, only by measuriag (or correcdy estimatiag) the compositions of T, Af, and B can one be certain whether a certain pair of Hquid layers are a microemulsion and conjugate aqueous phase, a microemulsion and oleic phase, or simply a pair of aqueous and oleic phases. [Pg.148]

Topology. This parameter may have reference to either the receptor as an individual molecular stmcture or to the receptor—substrate complex on a higher level of organization that is direcdy related to the mode and efficiency of molecular recognition (14,30). [Pg.177]

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

Xylenes and ethylbenzene [100 1 -4J (EB) are Cg aromatic isomers having the molecular formula CgH g. The xylenes consist of three isomers o-xylene [954-7-6] (OX), xylene [108-38-3] (MX), and j -xylene [10642-3] (PX). These differ in the positions of the two methyl groups on the benzene ting. The molecular stmctures are shown below. [Pg.410]

Because of their similar molecular stmctures, the three xylenes and EB exhibit many similar properties (see Table 2). The very close boiling points of these ... [Pg.411]

With the exception of glass fiber, asbestos (qv), and the specialty metallic and ceramic fibers, textile fibers are a class of soHd organic polymers distinguishable from other polymers by their physical properties and characteristic geometric dimensions (see Glass Refractory fibers). The physical properties of textile fibers, and indeed of all materials, are a reflection of molecular stmcture and intermolecular organization. The abiUty of certain polymers to form fibers can be traced to several stmctural features at different levels of organization rather than to any one particular molecular property. [Pg.271]

At HOY speeds, the rate of increase in orientation levels off but the rate of crystallization increases dramatically. Air drag and inertial contributions to the threadline stress become large. Under these conditions, crystallization occurs very rapidly over a small filament length and a phenomenon called neck-draw occurs (68,75,76). The molecular stmcture is stable, fiber tensde strength is adequate for many uses, thermal shrinkage is low, and dye rates are higher than traditional slow speed spun, drawn, and heat-set products (77). [Pg.330]

The relationship between molecular stmcture and sensory properties is very unclear for compounds with odor. It seems likely that there is a set of odors that could be called primaries, but a widely accepted Hst of such primary odor quahties has not been devised. Molecular size and shape have been used to... [Pg.4]

Kinetic as weU as thermodynamic problems are encountered in fluorination. The rate of reaction must be decelerated so that the energy Hberated may be absorbed or carried away without degrading the molecular stmcture. The most recent advances in direct fluorination ate the LaMar process (18—20) and the Exfluot process (21—24), which is practiced commercially by 3M. [Pg.274]

Pubhcations have described the use of HFPO to prepare acyl fluorides (53), fluoroketones (54), fluorinated heterocycles (55), as well as serving as a source of difluorocarbene for the synthesis of numerous cycHc and acycHc compounds (56). The isomerization of HFPO to hexafluoroacetone by hydrogen fluoride has been used as part of a one-pot synthesis of bisphenol AF (57). HFPO has been used as the starting material for the preparation of optically active perfluorinated acids (58). The nmr spectmm of HFPO is given in Reference 59. The molecular stmcture of HFPO has been deterrnined by gas-phase electron diffraction (13). [Pg.304]

Fluoroacetic acid [144-49-OJ, FCH2COOH, is noted for its high, toxicity to animals, including humans. It is sold in the form of its sodium salt as a rodenticide and general mammalian pest control agent. The acid has mp, 33°C bp, 165°C heat of combustion, —715.8 kJ/mol( —171.08 kcal/mol) (1) enthalpy of vaporization, 83.89 kJ /mol (20.05 kcal/mol) (2). Some thermodynamic and transport properties of its aqueous solutions have been pubHshed (3), as has the molecular stmcture of the acid as deterrnined by microwave spectroscopy (4). Although first prepared in 1896 (5), its unusual toxicity was not pubhshed until 50 years later (6). The acid is the toxic constituent of a South African plant Dichapetalum i mosum better known as gifirlaar (7). At least 24 other poisonous plant species are known to contain it (8). [Pg.307]

The cholesteric phase maybe considered a modification of the nematic phase since its molecular stmcture is similar. The cholesteric phase is characterized by a continuous change in the direction of the long axes of the molecules in adjacent layers within the sample. This leads to a twist about an axis perpendicular to the long axes of the molecules. If the pitch of the heHcal stmcture is the same as a wavelength of visible light, selective reflection of monochromatic light can be observed in the form of iridescent colors. [Pg.64]

Thyroid-stimulating hormone can be used clinically to test thyroid function but has not found practical apphcation in the treatment of human thyroid insufficiency. Direct replacement therapy with thyroid hormone is easy and effective, owing to a simple molecular stmcture. TSH has been used in the veterinary treatment of hypothyroidism, and preparations of TSH ate produced by Cooper Animal Health, Inc. and Armour Pharmaceuticals. [Pg.178]


See other pages where Molecular stmcture is mentioned: [Pg.31]    [Pg.1067]    [Pg.1119]    [Pg.2497]    [Pg.2543]    [Pg.2574]    [Pg.2608]    [Pg.2954]    [Pg.2954]    [Pg.2966]    [Pg.472]    [Pg.44]    [Pg.122]    [Pg.147]    [Pg.199]    [Pg.249]    [Pg.563]    [Pg.268]    [Pg.271]    [Pg.349]    [Pg.442]    [Pg.11]    [Pg.301]    [Pg.307]    [Pg.361]    [Pg.428]    [Pg.479]    [Pg.107]    [Pg.184]    [Pg.39]    [Pg.340]    [Pg.541]   


SEARCH



Stmcture

© 2024 chempedia.info