Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry detectors atmospheric pressure chemical ionization

For the last several years, mass spectrometry with atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) have determined the trends in the analysis of dyes. Since 1987, various variants of ESI have been used in which droplet formation was assisted by compressed air,[1,2] temperature (e.g. Turbo Ion Spray ) or ultrasound, and they were able to handle flow rates up to 1 2 ml min This made a combination of analytical RPLC and ESI easily and widely used. The reason why it often was (and is) used instead of a traditional UV-Vis detector is the better sensitivity and selectivity of MS in comparison with spectrophotometric detection. Apart from these advantages, MS offers easily interpretable structural information. However, various... [Pg.365]

Atomic Emission Detector Atmospheric Pressure Chemical Ionization Mass Spectrometry Chemical Abstracts Service Chemical Abstract... [Pg.126]

Mass Spectrometry Mass to charge ratio (m/z) allows specific compound ID determination. Several t)rpes of ionization techniques electrospray, atmospheric pressure chemical ionization, electron impact. The detector usually contains low volume cell through which the mobile phase passes carrpng the sample components. [Pg.11]

The number of detectors that are sensitive and selective enough to be applied online with LC is limited because the solvents used are not compatible, as in the case of immunochemical detection after reversed- or normal-phase LC. The technology of coupling is still under development and not yet available in a large number of laboratories not specialized in techniques such as LC-MS. Therefore, LC separations are frequently followed by offline detection. Confirmatory analysis of suspected liquid chromatographic peaks can be made possible by coupling liquid chromatography with mass spectrometry. Atmospheric-pressure chemical ionization LC-MS has been employed for the identification of six steroid hormones in bovine tissues (448). [Pg.1065]

Mass spectrometry (MS) is now an integrated detector for liquid chromatography. This is due to the advent of atmospheric pressure ionization (API) interfaces. In an API interface, the column effluent is nebulized into an atmospheric pressure ion region. Nebulization is performed pneumatically in atmospheric pressure chemical ionization (APCI) by a strong electrical field in electrospray or by a combination of both in ion spray. Ions are produced from the evaporating droplets... [Pg.39]

Notes LOD, limit of detection MeOH, methanol EtOH, ethanol ACN, acetonitrile EtAC, ethyl acetate SPE, solid phase extraction HLB (hydrophilic lipophilic balanced) TFA, trifluoroacetic acid GC, gas chromatography TMS, trimethylsilyl MS, mass spectrometry HPLC, high-performance liquid chromatography DAD, diode array detector NMR, nuclear magnetic resonance ESI, electrospray ionization APCI, atmospheric pressure chemical ionization CE, capillary electrophoresis ECD, electrochemical detector CD, conductivity detector TLC, thin layer chromatography PDA, photodiode array detector. [Pg.65]

ECD = electron capture detector FID = flame ionization detector GC = gas chromatography HRGC = high resolution gas chromatography LC-APCI-MS = liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry LSE = liquid-solid extraction MS = mass spectrometry PVC = polyvinyl chloride SFE = supercritical fluid extraction... [Pg.235]

Today, mass spectrometry offers an attractive alternative as a detector to HPLC. Newer techniques for linking HPLC systems with mass spectrometers directly via atmospheric pressure chemical ionization (APCI) and electrospray interfaces should see an expansion of this analytical tool in the analysis of confectionery fats, a field in which it has not yet been applied. Triacylglycerols... [Pg.74]

Maoka, T., Fujiwara, Y., Hashimoto, K., and Akimoto, N. 2002. Rapid identification of carotenoids in a combination in a combination of liquid chromatography/UV-visible absorption spectrometry by phtodiode array detector and atmospheric pressure chemical ionization mass spectrometry (LC/PAD/APCI-MS). J. Oleo Sci., 5,1-9. [Pg.488]

The dynamic development of mass spectrometry has had a huge impact on lipid analysis. Currently, a variety of suitable mass spectrometers is available. In principal, a mass spectrometer consists of an ion source, a mass analyzer, and an ion detector. The typical features of each instrument (Fig. 2) result mostly from the types of ion source and mass analyzer. To date, the ionization techniques apphed to lipid analysis include Electrospray Ionization (ESI or nano-ESI), Atmospheric Pressure Chemical Ionization (APCI), Matrix-Assisted Laser Desorption/Ionization... [Pg.927]

The detection and identification of phenolic compounds, including phenolic acids, have also been simph-fied using mass spectrometry (MS) techniques on-hne, coupled to the HPLC equipment. The electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) interfaces dominate the analysis of phenohcs in herbs, fmits, vegetables, peels, seeds, and other plants. In some cases, HPLC, with different sensitivity detectors (UV, electrochemical, fluorescence), and HPLC-MS are simultaneously used for the identification and determination of phenolic acids in natural plants and related food products.In some papers, other spectroscopic instmmental techniques (IR, H NMR, and C NMR) have also been apphed for the identification of isolated phenolic compounds. [Pg.1170]

HPLC with MS detection is commonly employed as an alternate detector to UV. Mass spectrometry is generally regarded as a universal detector, but the response per unit weight depends greatly on the ionization type (e.g., positive or negative electrospray, atmospheric pressure chemical ionization, etc.) and on the ionization efficiency of the analyte under the given conditions. [Pg.113]

NBDF 4-nitrobenzenediazonium fluoroborate DBBQC 3,5-dibromo-/)-benzoquinonechlorimine OPA o-phthalaldehyde Oncolumn-TD oncolumn thermal decomposition DAD diode array detector UV UV detector MS mass spectrometry El electron ionization ESI electrospray ionization FID flame ionization detector APCI atmospheric pressure chemical ionization z-cell z-cell configuration FL fluorescence detection... [Pg.923]

Detection methods HPLC-DAD, HPLC with diode-array detection. HPLC-(ESI-MS), HPLC with electrospray ionization mass spectrometry. RP-HPLC, revcrsed-phase HPLC. UPLC/Q-TOFMS, UPLC with quadrupole-time of flight mass spectrometry. HPLC-APCI-MS, HPLC with atmospheric pressure chemical ionization mass spectrometry. CE-IT-MS, capillary elecliophoresis-ion-1r mass spectrometry. LC-ESI-ITMS, liquid chromatography-electrospray ionization ion trap mass spectrometry. LC-ELSD, LC with evaporative light scattering detector. DNBZ-Cl, 3,5-dinitrobenzoyl chloride. [Pg.294]

The most commonly used analytical technique for sugars is HPLC with a refractive index detector (RID). Although the HPLC-RID method is simple, the RID lacks sensitivity and selectivity. Therefore, UV and fluorescence detection is frequently used, coupled with pre- or postcolumn derivatization, for analysis with higher sensitivity. Liquid chromatography-mass spectrometry (LC-MS) using electrospray ionization also requires pre- or postcolumn derivatization. LC-MS using atmospheric pressure chemical ionization does... [Pg.1517]

Chapter 6, titled Selection of Ionization Methods of Analytes in the TLC-MS Techniques provides an overview of mass spectrometric techniques that can be coupled with TLC and act as specific detectors in this hyphenated approach. The mass spectrometric techniques discussed in this chapter are secondary mass spectrometry (SIMS), liquid secondary ion mass spectrometry (LSIMS), fast atom bombardment (FAB), matrix-assisted laser desorption/ionization (MALDI), atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI), electrospray ionization (ESI), desorption electrospray ionization (DESI), electrospry-assisted laser desorption/ionization (ELDI), easy ambient sonic spray ionization (EASI), direct analysis in real time (DART), laser-induced acoustic desorption/electrospray ionization (LIAD/ESI), plasma-assisted multiwavelength laser desorption/ionization (PAMLDI), atmospheric-pressure chemical ionization (APCI), and dielectric barrier discharge ionization (DBDI). For the sake of illustration, the authors introduce practical examples of implementing TLC separations with detection carried out by means of individual mass spectrometric techniques for the systematically arranged compounds belonging to different chemical classes. [Pg.9]

Detection by mass spectrometry is growing in popularity. This is undoubtedly a result of the high detection sensitivity and positive identification offered by MS in association with the fast development of interfaces between column and detector that have greatly simplified the IC/MS combination. Several combinations of IC and MS detection are available. These include ICP-MS (element-specific detection) and MS with atmosphere pressure ionization (API), operated with either electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI). [Pg.34]

Improvements in the instrumentation, ionization sources, high-resolution mass analyzers, and detectors [67-69], in recent years have taken mass spectrometry to a different level of HPLC-MS for natural product analysis. Mass spectrometry detection offers excellent sensitivity and selectivity, combined with the ability to elucidate or confirm chemical structures of flavonoids [70-72]. Both atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) are most commonly used as ionization sources for flavonoid detection [73-76]. Both negative and positive ionization sources are applied. These sources do not produce many fragments, and the subsequent collision-induced dissociation energy can be applied to detect more fragments. Tandem mass spectrometry (MS , n> 2) provides information about the relationship of parent and daughter ions, which enables the confirmation of proposed reaction pathways for firagment ions and is key to identify types of flavonoids (e.g., flavones, flavonols, flavanones, or chalcones) [77-80]. [Pg.2121]

As in GC, the MS detector has expanded the scope of LC determinations of pesticides [151]. Electrospray ionization (ESI) [33,51,54,58,72,75,78,152,153,155] and atmospheric pressure chemical ionization (APCI) [33,73,76] are the most frequently used ionization techniques in this context. Also, LC coupled to tandem mass spectrometry (LC/MS-MS)... [Pg.472]


See other pages where Mass spectrometry detectors atmospheric pressure chemical ionization is mentioned: [Pg.375]    [Pg.693]    [Pg.694]    [Pg.75]    [Pg.900]    [Pg.622]    [Pg.49]    [Pg.54]    [Pg.61]    [Pg.158]    [Pg.370]    [Pg.166]    [Pg.555]    [Pg.454]    [Pg.467]    [Pg.1104]    [Pg.1139]    [Pg.1174]    [Pg.3615]    [Pg.470]    [Pg.159]    [Pg.425]    [Pg.485]    [Pg.686]    [Pg.1504]    [Pg.181]   
See also in sourсe #XX -- [ Pg.300 , Pg.300 ]




SEARCH



Atmosphere pressure chemical ionization

Atmosphere, ionized

Atmospheric chemical ionization

Atmospheric ionization

Atmospheric mass

Atmospheric pressure chemical

Atmospheric pressure chemical ionization-mass

Atmospheric pressure chemical ionization-mass spectrometry

Atmospheric pressure chemical spectrometry

Atmospheric pressure ionization mass

Atmospheric-pressure chemical ionization

Atmospheric-pressure ionization

Chemical ionization

Chemical mass spectrometry

Chemical pressure

Chemical spectrometry

Detector pressure

Detector spectrometry

Detectors Ionization

Ionized chemical

Mass atmospheric pressure

Mass atmospheric pressure chemical

Mass chemical ionization

Mass detector

Mass spectrometry atmospheric pressure

Mass spectrometry detectors

Mass spectrometry ionization

Mass spectrometry ionized

Mass spectrometry pressure chemical ionization

© 2024 chempedia.info