Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specific detectors

Confirmation of the identities of nitrosamines generally is accompHshed by gas chromatography—mass spectrometry (gc/ms) (46,87). High resolution gc/ms, as well as gc/ms in various single-ion modes, can be used as specific detectors, especially when screening for particular nitrosamines (87) (see Analytical LffiTHODS Trace and residue analysis). [Pg.109]

The reason for such difficulties is the GPC mechanism itself. We do not separate by molar mass but by the size of the solvated molecules. Different solvation of chemical unlike molecules results in breaking the M sequence of the calibration curve this becomes visible especially in the low molar mass range. Sometimes such difficulties can be circumvented if a specific detector is used, e.g., if the sample absorbs in the ultraviolet (UV) range and the disturbing peaks are UV transparent. [Pg.440]

The analysis of complex matrices, such as natural products, food products, environmental pollutants and fossil fuels, is today a very important area of separation science. The latest developments in chromatographic techniques have yielded highly efficient systems, used with specific detectors to obtain high selectivity and or sensitivity. [Pg.16]

The thin-layer technique (CA 60, 6691) utilizes aliquots of proplnt ether extract (I) and the ether soln (II) of a known mixt. II consists of nitrates of glycerol and glycol, di-Bu or di-Et phthalates, Et or Me centralites, DNT, and diphenylamine. The chromatoplates are made of 85 15 silica gel and plaster of Paris. These plates, containing spots of I and 11, are developed with 1 1 C6H6-petroleum ether, then sprayed with specific detectors by color. The method is much quicker and easier than chemical analysis and simpler than infrared spectroscopy and column chromatography... [Pg.945]

Alcohol sulfates and alcohol ether sulfates separated by HPLC on a styrene-divinylbenzene copolymer column with 4 1 (v/v) methanol and 0.05 M ammonium acetate aqueous solution as the mobile phase were analyzed by simultaneous inductively coupled argon plasma vacuum emission spectroscopy (IPC), monitoring the 180.7-nm sulfur line as a sulfur-specific detector [294]. This method was applied to the analysis of these surfactants in untreated wastewaters. [Pg.284]

It is usually recognized that general detectors are less sensitive than specific detectors, have a lower dynamic range (see below) and do not give the best results when gradient elution is used. [Pg.34]

Like the UV detector, the mass spectrometer may be employed as either a general detector, when full-scan mass spectra are acquired, or as a specific detector, when selected-ion monitoring (see Section 3.5.2.1) or tandem mass spectrometry (MS-MS) (see Section 3.4.2) are being used. [Pg.34]

GC/ECD or a halogen-specific detector (HSD) (Method 8080) is the technique recommended by EPA s Office of Solid Waste and Emergency Response for determining a- and [3-endosulfan and endosulfan sulfate in water and waste water at low-ppb levels (EPA 1986a). At these low concentrations, identification of endosulfan residues can be hampered by the presence of a variety of other pesticides. Consequently, sample clean-up on a Florisil column is usually required prior to analysis (EPA 1986a). [Pg.253]

ECD = electron capture detector FID = flame ionization detection GC = gas chromatography HECD = Hall electrolytic conductivity detector HRGC = high-resolution gas chromatography HSD = halogen-specific detector H2SO4 = sulfuric acid MS = mass spectrometry NR = not reported PID = photoionization detection UV = ultraviolet detection... [Pg.238]

The effort required to establish identity of a nitrosamine in an environmental sample depends on the nature of the problem and the specificity of the primary detection system. TEA response is much stronger evidence of identity than response from a flame ionization or nitrogen-specific detector. If TEA response is supported by chemical (9) or ultraviolet photolysis (8) supporting data, identification is adequate for many... [Pg.344]

Gas chromatograph equipped with a thermionic specific detector (TSD) DB-5 Megabore capillary column, 30 m x 0.53-mm i.d. [Pg.362]

Gas chromatograph [Flewlett-Packard (FIP) 5890 or 6890 GC with HP 7673 or 6890 Series injector and OI Analytical Model 5220 electrolytic conductivity detector or 5360 halogen-specific detector HP 5890 or 6890 equipped with HP 7673 or 6890 Series injector and HP 5970 or 5972 mass-selective detector]... [Pg.568]

Gas chromatograph fitted with a thermionic nitrogen-specific detector Gas chromatograph fitted with a quadrupole mass-selective detector... [Pg.1169]

Varian 3400 with thermionic specific detector RestekRtx-5,30-m x 0.53-mmi.d., 1.5- xmfllmthickness... [Pg.1303]

Solute property detectors, such as spectroscopic andj electrochemical detectors, respond to a physical or chemical] property characteristic of the solute which, ideally, is] independent of the mobile phase. Althou this criterion is rarely met in practice, the signal discrimination is usually sufficient to permit operation with solvent changes (e.g., flow programming, gradient elution, etc.) and to provide high sensitivity with aj wide linear response range. Table 5.4. Solute-specific detectors complement ulk property detectors as they provide high ... [Pg.289]

Detectors are composed of a sensor and associated electronics. Design and performance of any detector depends heavily on the column and chromatographic system with which it is associated. Because of the complexity of many mixtures analysed and the limitation in regard to resolution, despite the use of high-resolution capillary columns and multicolumn systems, specific detectors are frequently necessary to gain selectivity and simplify the separation system. Many detectors have been developed with sensitivities toward specific elements or certain functional groups in molecules. Those detectors that exhibit the highest sensitivity are often very specific in response, e.g. the electron capture detector in GC or the fluorescence detector in LC. Because... [Pg.177]

Compatibility with a wide variety of sensitive and specific detectors multidetection... [Pg.194]

Applications Atomic emission spectrometry has been used for polymer/additive analysis in various forms, such as flame emission spectrometry (Section 8.3.2.1), spark source spectrometry (Section 8.3.2.2), GD-AES (Section 8.3.2.3), ICP-AES (Section 8.3.2.4), MIP-AES (Section 8.3.2.6) and LIBS. Only ICP-AES applications are significant. In hyphenated form, the use of element-specific detectors in GC-AED (Section 4.2) and PyGC-AED deserves mentioning. [Pg.615]

In Figure 8.12, the basic set-up of an ICP-MS instrument is presented as a block diagram, consisting of a sample introduction system, the inductively coupled argon plasma (ICP) and the mass-specific detector. By far the most commonly applied sample introduction technique is a pneumatic nebuliser, in which a stream of argon (typically 1 I.min ), expanding with high... [Pg.652]


See other pages where Specific detectors is mentioned: [Pg.76]    [Pg.76]    [Pg.194]    [Pg.71]    [Pg.229]    [Pg.381]    [Pg.218]    [Pg.201]    [Pg.116]    [Pg.234]    [Pg.239]    [Pg.332]    [Pg.116]    [Pg.76]    [Pg.78]    [Pg.566]    [Pg.572]    [Pg.821]    [Pg.145]    [Pg.649]    [Pg.802]    [Pg.35]    [Pg.176]    [Pg.177]    [Pg.178]    [Pg.201]    [Pg.475]    [Pg.526]    [Pg.549]   
See also in sourсe #XX -- [ Pg.222 ]

See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.209 ]




SEARCH



© 2024 chempedia.info