Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atmospheric chemical ionization

A number of interfaces such as thermospray (TSP), ionspray (IS), atmospheric chemical ionization (APCI) and electrospray (ES) can tolerate much higher flow rates without requiring that the flow be split at the end of the LC column. Ions that are produced in atmospheric pressure ionization sources are moved directly into the mass spectrometer through small apertures. [Pg.506]

Kolliker, S., M. Oehme, and C. Dye. 1998. Structure elucidation of 2,4-dinitrophenyl-hydrazone derivatives of carbonyl compounds in ambient air by HPLC/MS and multiple MS/MS using atmospheric chemical ionization in the negative mode. Anal. Chem. 70 1979-1985. [Pg.107]

Slip point (ISO 6321, 2005) and solid fat index (AOCS method Cd 10-57, 2005) can provide information as to the suitability of an oil for use in manufacturing margarines and shortenings. Triacylglycerol (TAG) composition is an additional compositional analysis that can provide information on the potential functionality of an oil as well as its potential oxidative stability. Reversed-phase HPLC with various detection methods such as flame ionization, refractive index, evaporative light scattering, or atmospheric chemical ionization (coupled with mass spectrometry) can be used to determine TAG composition (Neff et d., 1994 Neff et al., 2001). [Pg.502]

In general, QE-AAS, AES, AES, microwave induced plasma (MIP) and ICP-MS are used as detectors rather than the less specific FID, FPD, and ECD. The overriding reason for this is the greater sensitivity and selectivity afforded by the element-specific detectors, without which it would not be possible to determine the chemical species of interest at the low concentrations generally present in biological and environmental samples. The other main detection method that has been used is mass spectrometry in its various configurations, but particularly electrospray ionization (ESI) and atmospheric chemical ionization (APCI), which are used with HPLC and CE separations, and... [Pg.621]

Andreoli, R., Manini, R, Corradi, M., Mutti, A. and Niessen, W.M. (2003) Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17, 637-645. [Pg.256]

NMR spectra were measured with a Varian Unity 300 FT-NMR spectrometer. Liquid chromatography-atmospheric chemical ionization-mass spectrometry (LC-APCl-MS) in positive and negative ion modes was performed using a Hitachi M-1000 spectrometer. Unknown metabolites were isolated and purified from the grape fruits extracts with solid phase extraction method (Porapak Q) and HPLC. Isolated metabolites were analyzed by free form or derivatized (methylated, acetylated) form for identification. All of the non-radiolabelled reference standards 1-6 are synthesized in our laboratory and their chemical structures are shown in Figure 2. [Pg.207]

The most common ionization sources interfaced to UHPLC are electrospray ionization (ESI) and atmospheric chemical ionization (APCI) in both positive and negative ion modes, because they can both be operated at atmospheric pressure and offer a user-friendly way to couple UHPLC with MS (26). Most commercial MS systems are equipped with these two interfaces, allowing the easy switch between them. [Pg.274]

Decomposition (fragmentation) of a proportion of the molecular ions (M +) to form fragment ions (A B+, etc.) occurs mostly in the ion source, and the assembly of ions (M +, A+, etc.) is injected into the mass analyzer. For chemical ionization (Cl), the Initial ionization step is the same as in El, but the subsequent steps are different (Figure 1.1). For Cl, the gas pressure in the ion source is typically increased to 10 mbar (and sometimes even up to atmospheric pressure) by injecting a reagent gas (R in Figure 1.1). [Pg.1]

Chemical ionization and atmospheric-pressure ionization are covered in Chapters 1 and 9, respectively.) The corona discharge is relatively gentle in that, at atmospheric pressure, it leads to more sample molecules being ionized without causing much fragmentation. [Pg.39]

One of the first successful techniques for selectively removing solvent from a solution without losing the dissolved solute was to add the solution dropwise to a moving continuous belt. The drops of solution on the belt were heated sufficiently to evaporate the solvent, and the residual solute on the belt was carried into a normal El (electron ionization) or Cl (chemical ionization) ion source, where it was heated more strongly so that it in turn volatilized and could be ionized. However, the moving-belt system had some mechanical problems and could be temperamental. The more recent, less-mechanical inlets such as electrospray have displaced it. The electrospray inlet should be compared with the atmospheric-pressure chemical ionization (APCI) inlet, which is described in Chapter 9. [Pg.55]

The term nebulizer is used generally as a description for any spraying device, such as the hair spray mentioned above. It is normally applied to any means of forming an aerosol spray in which a volume of liquid is broken into a mist of vapor and small droplets and possibly even solid matter. There is a variety of nebulizer designs for transporting a solution of analyte in droplet form to a plasma torch in ICP/MS and to the inlet/ionization sources used in electrospray and mass spectrometry (ES/MS) and atmospheric-pressure chemical ionization and mass spectrometry (APCI/MS). [Pg.138]

The LC/TOF instmment was designed specifically for use with the effluent flowing from LC columns, but it can be used also with static solutions. The initial problem with either of these inlets revolves around how to remove the solvent without affecting the substrate (solute) dissolved in it. Without this step, upon ionization, the large excess of ionized solvent molecules would make it difficult if not impossible to observe ions due only to the substrate. Combined inlet/ionization systems are ideal for this purpose. For example, dynamic fast-atom bombardment (FAB), plas-maspray, thermospray, atmospheric-pressure chemical ionization (APCI), and electrospray (ES)... [Pg.163]

As described above, the mobile phase carrying mixture components along a gas chromatographic column is a gas, usually nitrogen or helium. This gas flows at or near atmospheric pressure at a rate generally about 0,5 to 3.0 ml/min and evenmally flows out of the end of the capillary column into the ion source of the mass spectrometer. The ion sources in GC/MS systems normally operate at about 10 mbar for electron ionization to about 10 mbar for chemical ionization. This large pressure... [Pg.254]

El = electron ionization Cl = chemical ionization ES = electrospray APCI = atmospheric-pressure chemical ionization MALDI = matrix-assisted laser desorption ionization PT = plasma torch (isotope ratios) TI = thermal (surface) ionization (isotope ratios). [Pg.280]

Electrospray Ionization (ES) and Atmospheric Pressure Chemical Ionization (APCI)... [Pg.283]

Thus, either the emitted light or the ions formed can be used to examine samples. For example, the mass spectrometric ionization technique of atmospheric-pressure chemical ionization (APCI) utilizes a corona discharge to enhance the number of ions formed. Carbon arc discharges have been used to generate ions of otherwise analytically intractable inorganic substances, with the ions being examined by mass spectrometry. [Pg.388]

Samples containing mixtures of peptides can be analyzed directly by electrospray. Alternatively, the peptides can be separated and analyzed by LC/MS coupling techniques such as electrospray or atmospheric pressure chemical ionization (APCI). [Pg.417]

The ion guides are frequently used to transmit ions from an atmospheric-pressure inlet/source system (electrospray ionization, atmospheric-pressure chemical ionization) into the vacuum region of an m/z analyzer. [Pg.426]

Atmospheric-pressure ionization. Chemical ionization performed at atmospheric pressure. [Pg.437]

AIR. (atmospheric) air, a standard for nitrogen and chlorine isotopes APCL atmospheric-pressure chemical ionization, also called plasmaspray API. atmospheric-pressure ionization... [Pg.445]

A liquid chromatography-mass spectrometry (LC-MS) method that can quantitatively analyze urinar y normal and modified nucleosides in less than 30 min with a good resolution and sufficient sensitivity has been developed. Nineteen kinds of normal and modified nucleosides were determined in urine samples from 10 healthy persons and 18 breast cancer patients. Compounds were separ ated on a reverse phase Kromasil C18 column (2.1 mm I.D.) by isocratic elution mode using 20 mg/1 ammonium acetate - acetonitrile (97 3 % v/v) at 200 p.l/min. A higher sensitivity was obtained in positive atmospheric pressure chemical ionization mode APCI(-i-). [Pg.351]

An on-line chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI/MS/MS) methods was developed for rapid screen of pharmacokinetics of different drugs, including 5 (98RCM1216). The electron impact mass spectrum of 5 and ethyl 9,10-difluoro-3-methyl-7-oxo-2,3-dihydro-7Ff-pyrido[l,2,3- fe]-l,4-benzoxazine-6-carboxylate was reported (97MI28). Electron impact/Fourier transform... [Pg.268]

I. Fener, V. Pichon, M-C. Hennion and D. Barcelo, Automated sample preparation with exti action columns by means of anti-isoproturon immunosorbents foi the determination of phenylurea herbicides in water followed by liquid chi omatography-diode aixay detection and liquid cliromatogi aphy-atmospheric pressure chemical ionization mass spectrometiy , 7. Chromatogr. 777 91-98 (1997). [Pg.132]

C. Aguilar, I. Feirer, R Bonnll, R. M. Marce and D. Barcelo, Monitoring of pesticides in river water based on samples previously stored in polymeric cartridges followed by on-line solid-phase extraction-liquid cliromatography-diode array detection and confirmation by atmospheric pressure chemical ionization mass spectrometry . Anal. Chim. Acta 386 237-248 (1999). [Pg.374]

S. Lacorte and D. Barcelo, Determination of parts per trillion levels of organophospho-rus pesticides in groundwater by automated on-line liquid- solid extraction followed by liquid chr omatography/atmospheric pressure chemical ionization mass spectrometry using positive and negative ion modes of operation . Anal. Chem. 68 2464- 2470 (1996). [Pg.374]

D. Puig, L. Silgoner, M. Grasserbauer and D. Barcelo, Part-per-trillion level determination of priority methyl-, nirto-, and clilor ophenols in river water samples by automated online liquid/solid exrtaction followed by liquid chr omatography/mass spectr ometry using atmospheric pressure chemical ionization and ion spray interfaces . Anal. Chem. 69 2756-2761 (1997). [Pg.374]

I. Eeirer, M. C. Hennion and D. Barcelo, Immunosorbents coupled on-line with liquid chi omatography/atmospheric pressure chemical ionization/mass specti ometiy for the part per trillion level determination of pesticides in sediments and natural waters using low preconcenti ation volumes . Anal. Chem. 69 4508-4514 (1997). [Pg.375]

Atmospheric pressure chemical ionization (APCI) Chemical ionization at atmospheric pressure. [Pg.372]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]


See other pages where Atmospheric chemical ionization is mentioned: [Pg.919]    [Pg.220]    [Pg.337]    [Pg.919]    [Pg.220]    [Pg.337]    [Pg.38]    [Pg.60]    [Pg.71]    [Pg.73]    [Pg.163]    [Pg.277]    [Pg.377]    [Pg.147]    [Pg.218]    [Pg.359]    [Pg.42]    [Pg.37]   
See also in sourсe #XX -- [ Pg.556 ]




SEARCH



Atmosphere pressure chemical ionization

Atmosphere pressure chemical ionization APCI)

Atmosphere, ionized

Atmospheric ionization

Atmospheric pressure chemical Electrospray ionization

Atmospheric pressure chemical ionization , ESI

Atmospheric pressure chemical ionization applications

Atmospheric pressure chemical ionization carotenoid analysis

Atmospheric pressure chemical ionization characterized

Atmospheric pressure chemical ionization chromatography

Atmospheric pressure chemical ionization corona discharge

Atmospheric pressure chemical ionization desorption

Atmospheric pressure chemical ionization flow rate through

Atmospheric pressure chemical ionization heated nebulizer interface

Atmospheric pressure chemical ionization matrix effects

Atmospheric pressure chemical ionization photoionization

Atmospheric pressure chemical ionization process

Atmospheric pressure chemical ionization tandem mass

Atmospheric pressure chemical ionization used with

Atmospheric pressure chemical ionization voltage

Atmospheric pressure chemical ionization-mass

Atmospheric pressure chemical ionization-mass spectrometry

Atmospheric-pressure chemical ionization

Atmospheric-pressure chemical ionization APCI)

Atmospheric-pressure chemical ionization advantages

Atmospheric-pressure chemical ionization and mass

Atmospheric-pressure chemical ionization and mass spectrometry

Atmospheric-pressure chemical ionization disadvantages

Atmospheric-pressure chemical ionization inlet

Atmospheric-pressure chemical ionization lipid analysis

Atmospheric-pressure chemical ionization mass spectroscopy

Atmospheric-pressure chemical ionization mechanism

Atmospheric-pressure chemical ionization negative ions produced

Atmospheric-pressure chemical ionization suitability

Atmospheric-pressure chemical ionization techniques

Atmospheric-pressure-chemical-ionization adducts

Atmospheric-pressure-chemical-ionization combined with electrospray interface

Atmospheric-pressure-chemical-ionization flow rates

Atmospheric-pressure-chemical-ionization interface

Atmospheric-pressure-chemical-ionization molecular-weight limit

Atmospheric-pressure-chemical-ionization operation

Chemical ionization

Desorption atmospheric pressure chemical ionization DAPCI)

Electron-capture atmospheric pressure chemical ionization

HPLC-atmospheric pressure chemical ionization

HPLC-atmospheric pressure chemical ionization mass spectrometry

Heated nebulizer-atmospheric pressure chemical ionization

Ionization methods atmospheric-pressure chemical

Ionized chemical

Liquid chromatography-atmospheric pressure chemical ionization

Mass spectrometry detectors atmospheric pressure chemical ionization

The Atmospheric-Pressure Chemical Ionization Interface

© 2024 chempedia.info