Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Positive Identification

Once a fraction or component of an essential oil or extract has been isolated, its identity needs to be determined. A familiar or common chemical is usually considered to be positively identified if its retention time on a given GC phase and its mass spectrum match those of a reference material. However, the identification of some materials with [Pg.212]


Comparison of the mass spectrum from a target compound (top), with the three best fits from the library of standard spectra (lower three traces). The closeness of fit of the mass spectra and the chromatographic retention time lead to a positive identification of 2, 6-dimethylheptane. [Pg.300]

Among the rarest of all meteorites are the lunar meteorites. Isotopic, mineralogical, and compositional properties of these samples provide positive identification as lunar samples because of the unique properties of lunar materials that have been discovered by extensive analyses of lunar materials returned by the manned ApoUo and unstaffed Luna missions. AH but one of the lunar meteorites that have been found to date have been recovered from Antarctica. [Pg.99]

Data on infrared curves for many nitroparaffins and their sodium salts have been reported (10,85—89). References 87, 90 and 91 give uv spectra. Accurate analysis and positive identification of the components of a mixture of several nitroparaffins can be obtained by mass spectrometry (qv) (92). [Pg.103]

In addition, the appHcation of the mass spectrometer (ms) as a detector for gas—Hquid chromatography has made the positive identification of peaks possible. High performance Hquid chromatography (hplc), which involves various detectors, can be used to measure hydrophilic and hydrophobic organic compounds in water. [Pg.233]

Most sample components analyzed with electrophoretic techniques are invisible to the naked eye. Thus methods have been developed to visualize and quantify separated compounds. These techniques most commonly involve chemically fixing and then staining the compounds in the gel. Other detection techniques can sometimes yield more information, such as detection using antibodies to specific compounds, which gives positive identification of a sample component either by immunoelectrophoretic or blotting techniques, or enhanced detection by combining two different electrophoresis methods in two-dimensional electrophoretic techniques. [Pg.183]

It is possible to confuse SCC with other brittle cracking phenomena. Confirmation of SCC typically requires a metallographic examination. On thin-walled components, the surface from which the cracking originates may not be apparent. In these cases, a formal metallographic examination may be required to assure positive identification of the surface from which the cracks originate. [Pg.209]

Qualitatively, the spark source mass spectrum is relatively simple and easy to interpret. Most instrumentation has been designed to operate with a mass resolution Al/dM of about 1500. For example, at mass M= 60 a difference of 0.04 amu can be resolved. This is sufficient for the separation of most hydrocarbons from metals of the same nominal mass and for precise mass determinations to identify most species. Each exposure, as described earlier and shown in Figure 2, covers the mass range from Be to U, with the elemental isotopic patterns clearly resolved for positive identification. [Pg.604]

The spark source is an energetic ionization process, producing a rich spectrum of multiply charged species (Af/2, Af/3, Af/4, etc.). These masses, falling at halves, thirds, and fourths of the unit mass separation can aid in the positive identification of elements. In Figure 2, species like Au and are labeled. The most abundant... [Pg.604]

To conclude, this sampling of the literature of risk perception, the comments of Covello, 1981 may be summarized. Surveys have been of small specialized groups - generally not representative of the population as a whole. There has been little attempt to analyze the effects of ethnicity, religion, sex, region age, occupation and other variables that may affect risk perception. People respond to surveys with the first thing that comes to mind and tend to stick to this answer. They provide an answer to any question asked even when they have no opinion, do not understand the question or have inconsistent beliefs. Surveys are influenced by the order of questions, speed of response, whether a verbal or numerical respon.se is required and by how the answer is posed. Few Studies have examined the relationships between perceptions of technological hazards and behavior which seems to be influenced by several factors such as positive identification with a leader, efficacy of social and action, physical proximity to arenas of social conflict. [Pg.13]

The standard requires purchasing documents to include, where applicable, the title or other positive identification, and applicable issue of specification, drawings, process requirements, inspection instructions, and other relevant technical data, including requirements for approval or qualification of product, procedures, process equipment, and personnel. [Pg.326]

Nickel occupies an intermediate position in the electrochemical series Ni2 /Ni = -0-227 V, so that it is more noble than Zn and Fe but less noble than Sn, Pb and Cu. Figure 4.21 shows a revised potential-pH equilibrium (Pourbaix) diagram for the Ni-H O system at 25°C. The existence of the higher anhydrous oxides Nij04, NijO, and NiOj shown in an earlier diagram appears doubtful in aqueous systems in the absence of positive identification of such species. It is seen that ... [Pg.765]

Although a number of solid compounds of plutonium were synthesized by ultramicrochemical techniques during our first year and a half at the Metallurgical Laboratory, it was not until November, 1943 that a positive identification of a crystal structure was made. W. H. Zachariasen joined the project in the fall of 1943 and very soon began to make definitive identifi-... [Pg.27]

Positive identification of low-ppb (pg/L) levels of endosulfan in human blood has been achieved by GC equipped with a microcoulometric detector (GC/MC) (Griffith and Blanke 1974). Although GC/MC is specific and nearly as sensitive as GC/ECD for detecting endosulfan in blood, GC/MC is more difficult to operate. Both isomers of endosulfan can be measured in blood using a method described by Guardino et al. (1996). According to the authors, endosulfan can be recovered and measured with an approximate limit of quantitation (LOQ) of 0.2 pg/L (sub-ppb). [Pg.249]

Successive 1,4 units in the synthetic polyisoprene chain evidently are preponderantly arranged in head-to-tail sequence, although an appreciable proportion of head-to-head and tail-to-tail junctions appears to be present as well. Apparently the growing radical adds preferentially to one of the two ends of the monomer. Which of the reactions (6) or (7) is the preferred process cannot be decided from these results alone, however. Positive identification of both 1,2 and 3,4 units in the infrared spectrum shows that both addition reactions take place during the polymerization of isoprene. The relative contributions of the alternative addition processes cannot be ascertained from the proportions of these two units, however, inasmuch as the product radicals formed in reactions (6) and (7), may differ markedly in their preference for addition in one or the other of the two resonance forms available to each. We may conclude merely that structural evidence indicates a preference for oriented (i.e., head-to-tail) additions but that the 1,4 units of synthetic polyisoprene are by no means as consistently arranged in head-to-tail sequence as in the naturally occurring poly-isoprenes. [Pg.244]

Novotny M., Ma W., Wiesler D. and Zidek L. (1999). Positive identification of the puberty-accelerating pheromone of the house mouse the volatile ligands associating with the major urinary protein. Proc Roy Soc Lond (B) 266, 2017-2022. [Pg.234]

A multiwavelength approach might have been considered as an alternative to chemical derivatisation. Ruddle and Wilson [62] reported UV characterisation of PE extracts of three antioxidants (Topanol OC, Ionox 330 and Binox M), all with identical UV spectra and 7max = 277 nm, after reaction with nickel peroxide in alkaline ethanolic solutions, to induce marked differentiation in different solvents and allow positive identification. Nonionic surfactants of the type R0(CH2CH20) H were determined by UV spectrophotometry after derivatisation with tetrabromophenolphthalein ethyl ester potassium salt [34]. Magill and Becker [63] have described a rapid and sensitive spectrophotometric method to quantitate the peroxides present in the surfactants sorbitan monooleate and monostearate. The method, which relies on the peroxide conversion of iodide to iodine, works also for Polysorbate 60 and other surfactants and is more accurate than a titrimetric assay. [Pg.310]

Thermal-programmed solid insertion probe mass spectrometry (TP-SIP-MS) has been proposed [247,248], in which the solid insertion probe consisting of a water-cooled microfumace enters the mass spectrometer via an airlock. The sample is contained in a small Pyrex tube (i.d. 1 mm, length 20 mm). The TIC trace gives a characteristic evolved gas profile for each compound in a mixture of materials, and the mass spectra associated with each TIC peak give a positive identification of that component as it is vaporised. TP-SIP-MS is appropriate for analysis of small solid particles which are volatile, or produce volatile decomposition products. The technique is a form of evolved gas analysis. [Pg.410]

SFE-GC is an attractive approach to coupling the extraction, concentration and chromatographic steps for the analysis of samples containing analytes that can be analysed using capillary GC. Often it is difficult to identify all the components which are extracted from samples by FID alone. This is a particular problem when the sample history and/or the identity of the compounds of interest are not known. When SFE-GC is combined to powerful spectroscopic detectors, unique data can be obtained, allowing their use as routine tools in the analytical laboratory. For positive identification of components of interest, multihyphenated techniques such as SFE-GC-AED, SFE-GC-MS, SFE-GC-FUR-MS are employed [46]. [Pg.434]

Separation and positive identification of unknown components (fingerprinting capability)... [Pg.462]

Positive identification of unknown compounds (library searchable EI/CI spectra)... [Pg.503]

Capillary HPLC-MS has been reported as a confirmatory tool for the analysis of synthetic dyes [585], but has not been considered as a general means for structural information (degradant identification, structural elucidation or unequivocal confirmation) positive identification of minor components (trace component MW, degradation products and by-products, structural information, thermolabile components) or identification of degradation components (MW even at 0.01 % level, simultaneous mass and retention time data, more specific and much higher resolution than PDA). Successful application of LC-MS for additive verification purposes relies heavily and depends greatly on the quality of a MS library. Meanwhile, MB, DLI, CF-FAB, and TSP interfaces belong to history [440]. [Pg.513]

The question then arises as to how, in an unknown system, one can identify which subunit (a or Py) carries the message. Two main approaches are available for identifying a Py-mediated response replication (and occlusion) by expressed or applied Py subunits and antagonism by expressed or applied Py-binding peptides such as a C-terminus peptide from PARK-1 or a-transducin, which, in essence, compete with the target for free Py subunits. Positive identification... [Pg.224]

It is now possible to evaluate the reproducibility and taxonomic utility of the MALDI-TOF MS method using spectra generated over a period of about eight years.3,61,62 Comparisons between MALDI-TOF MS and other standard methods have now been reported,23 and the method clearly can be used for rapid screening, if not yet for positive identification. [Pg.147]

Cargile, B.J., Bundy, J.L., Stephenson, JL., Jr. (2004). Potential for false positive identifications from large databases through tandem mass spectrometry. J. Proteome Res. 3, 1082-1085. [Pg.285]

A 2D system coupled with a TOF-MS detector provides not only resolution for a large number of protein components, but also yields accurate intact molecular weight information (e.g., Opiteck et al., 1997 Liu et al., 2002 Millea et al., 2005). Moreover, by splitting the effluent just prior to the MS interface, a small portion can be diverted for MS analysis, whereas the bulk of the sample can be collected for subsequent analysis, following enzymatic digestion, to provide positive identification and characterization of the proteins present in the fraction. [Pg.293]

This is quite a useful technique which can give a rapid, positive identification of -OH, -NH2, and -NHR groups in cases where deuteration would be of little value. Even though the technique can be a little time-consuming and labour-intensive in terms of sample preparation, it can nonetheless yield results in less time than it would take to acquire definitive 13C data - particularly if your material is limited. [Pg.104]


See other pages where Positive Identification is mentioned: [Pg.253]    [Pg.261]    [Pg.113]    [Pg.198]    [Pg.351]    [Pg.386]    [Pg.259]    [Pg.169]    [Pg.625]    [Pg.407]    [Pg.770]    [Pg.375]    [Pg.72]    [Pg.872]    [Pg.4]    [Pg.384]    [Pg.613]    [Pg.83]    [Pg.216]    [Pg.333]    [Pg.645]    [Pg.736]    [Pg.460]    [Pg.291]    [Pg.219]   


SEARCH



© 2024 chempedia.info