Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Assisted Laser Desorption Ionization

MALDI is a soft ionization technique used for the analysis of biomolecules (biopolymers such as proteins, peptides, and sugars) and other large organic molecules, such as polymers, dendrimers, and other macromolecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is most similar in character to ESI both in relative softness and the ions produced. [Pg.152]

The ionization is triggered by a laser beam. A matrix is used to protect the macromolecule from being destroyed by direct contact with the laser beam and to facilitate vaporization and ionization. [Pg.152]

The matrix consists of crystallized molecules, of which the three most commonly [Pg.152]

A solution of one of these molecules is made, often in a mixture of highly purified water and an organic solvent (normally acetonitrile or ethanol). Trifluoroacetic acid (TEA) may also be added. [Pg.152]

The matrix solution is mixed with the analyte. The organic solvent allows hydro-phobic molecules to dissolve into the solution, while the water allows for water-soluble (hydrophilic) molecules to do the same. This solution is placed onto a MALDI plate specially designed for this purpose. The solvents vaporize, leaving only the recrystallized matrix, but now with analyte molecules spread throughout the crystals. The matrix and the analyte are said to be cocrystallized in a MALDI spot. [Pg.152]


A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization. FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization.
Until about the 1990s, visible light played little intrinsic part in the development of mainstream mass spectrometry for analysis, but, more recently, lasers have become very important as ionization and ablation sources, particularly for polar organic substances (matrix-assisted laser desorption ionization, MALDI) and intractable solids (isotope analysis), respectively. [Pg.119]

Some solid materials are very intractable to analysis by standard methods and cannot be easily vaporized or dissolved in common solvents. Glass, bone, dried paint, and archaeological samples are common examples. These materials would now be examined by laser ablation, a technique that produces an aerosol of particulate matter. The laser can be used in its defocused mode for surface profiling or in its focused mode for depth profiling. Interestingly, lasers can be used to vaporize even thermally labile materials through use of the matrix-assisted laser desorption ionization (MALDI) method variant. [Pg.280]

El = electron ionization Cl = chemical ionization ES = electrospray APCI = atmospheric-pressure chemical ionization MALDI = matrix-assisted laser desorption ionization PT = plasma torch (isotope ratios) TI = thermal (surface) ionization (isotope ratios). [Pg.280]

Ionization can be improved in many cases by placing the sample in a matrix formed from sinapic acid, nicotinic acid, or other materials. This variant of laser desorption is known as matrix-assisted laser desorption ionization (MALDI). The vaporized acids transfer protons to sample molecules (M) to produce protonated ions [M + H]+. [Pg.384]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Laser-desorption mass spectrometry (LDMS) or matrix-assisted laser desorption ionization (MALDI) coupled to a time-of-flight analyzer produces protonated or deprotonated molecular ion clusters for peptides and proteins up to masses of several thousand. [Pg.417]

MALDI. matrix-assisted laser desorption ionization... [Pg.446]

DETECTION OF AROMATIC AMINES BY SURFACE-ASSISTED LASER DESORPTION-IONIZATION... [Pg.103]

An application of surface-assisted laser desorption-ionization (SALDI) method for practical, ultrahigh sensitivity detection of aromatic amines by GC-MS is reported. The prototype analytical device for trace detection of different organic compounds is created. [Pg.103]

APPLICATION OF SURFACE-ASSISTED LASER DESORPTION IONIZATION TO THE DETECTION OF BIOMOLECULES... [Pg.140]

Matrix-assisted laser desorption/ionization (MALDI) is widely used for the detection of organic molecules. One of the limitations of the method is a strong matrix background in low-mass (up to 500-700 Da) range. In present work an alternative approach based on the application of rough matrix-less surfaces and known as surface-assisted laser desoi ption/ionization (SALDI), has been applied. [Pg.140]

Electron impact (El), or Efectrospray ionization (ESI), or Matrix-assisted laser desorption ionization (MALDI)... [Pg.409]

Most biochemical analyses by MS use either electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALD1), typically linked to a time-of-flight (TOF) mass analyzer. Both ESI and MALDl are "soft" ionization methods that produce charged molecules with little fragmentation, even with biological samples of very high molecular weight. [Pg.417]

MALDI (Section 12.4) Matrix-assisted laser desorption ionization a mild method for ionizing a molecule so that fragmentation is minimized during mass spectrometry. [Pg.1245]

Matrix-assisted Laser Desorption/ Ionization Mass Spectrometry... [Pg.748]

Tandem mass spectrometry (MS/MS) is a method for obtaining sequence and structural information by measurement of the mass-to-charge ratios of ionized molecules before and after dissociation reactions within a mass spectrometer which consists essentially of two mass spectrometers in tandem. In the first step, precursor ions are selected for further fragmentation by energy impact and interaction with a collision gas. The generated product ions can be analyzed by a second scan step. MS/MS measurements of peptides can be performed using electrospray or matrix-assisted laser desorption/ionization in combination with triple quadruple, ion trap, quadrupole-TOF (time-of-flight), TOF-TOF or ion cyclotron resonance MS. Tandem... [Pg.1191]

Two relatively new techniques, matrix assisted laser desorption ionization-lime of flight mass spectrometry (MALDI-TOF) and electrospray ionization (FS1), offer new possibilities for analysis of polymers with molecular weights in the tens of thousands. PS molecular weights as high as 1.5 million have been determined by MALDI-TOF. Recent reviews on the application of these techniques to synthetic polymers include those by Ilantoif54 and Nielen.555 The methods have been much used to provide evidence for initiation and termination mechanisms in various forms of living and controlled radical polymerization.550 Some examples of the application of MALDI-TOF and ESI in end group determination are provided in Table 3.12. The table is not intended to be a comprehensive survey. [Pg.143]

The molecular weights and molecular weight distributions (MWD) of phenolic oligomers have been evaluated using gel permeation chromatography (GPC),23,24 NMR spectroscopy,25 vapor pressure osmometry (VPO),26 intrinsic viscosity,27 and more recently matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).28... [Pg.385]

Maleamic acid, cyclization of, 293 Maleic anhydride, 59 Maleimido azine, 307 Manganese diacetate catalysts, 71 Mark-Houwink-Sakurada equation, 57 Material safety data sheets (MSDSs), 246 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), 385, 388 McGrath, J. E., 327 MDI isomers, 210 MDIs. See Methylene diphenyl diisocyanates (MDIs)... [Pg.588]

Matrix-assisted laser desorption ionization post-source-decay mass spectrometry... [Pg.3]

Mass spectroscopy is a useful technique for the characterization of dendrimers because it can be used to determine relative molar mass. Also, from the fragmentation pattern, the details of the monomer assembly in the branches can be confirmed. A variety of mass spectroscopic techniques have been used for this, including electron impact, fast atom bombardment and matrix-assisted laser desorption ionization (MALDI) mass spectroscopy. [Pg.138]

Matrix-assisted laser desorption ionization (MALDI) is not yet a technique that has been used extensively for LC-MS applications. It is included here because it often provides analytical information complementary to that obtained from LC-MS with electrospray ionization, as illustrated later in Chapter 5. [Pg.55]

Experimentation showed that the protein was not glycosylated and that the sequence at the iV-amino acid terminus corresponded to that expected. The C-terminus sequence, however, did not correspond to that predicted and these data were interpreted in terms of the presence of a heterogeneous, truncated, protein. A study of the tryptic digest fragments from this protein with matrix-assisted laser desorption ionization (MALDI) with post-source decay enabled the authors to suggest the positions at which the parent protein had been truncated. [Pg.199]

The unseparated digest mixture was studied directly by mass spectrometry using matrix-assisted laser desorption ionization (MALDI) and this showed six of the polypeptides detected by LC-MS and three of the expected polypeptides that had not been detected by LC-MS. In contrast, MALDI did not show three polypeptides observed by LC-MS. [Pg.216]

Matrix-assisted laser desorption ionization (MALDI) A method used for the ionization of high-molecular-weight compounds. In this approach, the analyte is crystallized with a solid matrix and then bombarded with a laser of a frequency which is absorbed by the matrix material. [Pg.307]

Matrix material A material used in fast-atom bombardment and matrix-assisted laser desorption ionization to transfer energy to an analyte molecule to bring about its ionization. [Pg.308]


See other pages where Assisted Laser Desorption Ionization is mentioned: [Pg.1331]    [Pg.9]    [Pg.136]    [Pg.153]    [Pg.548]    [Pg.433]    [Pg.259]    [Pg.490]    [Pg.6]    [Pg.6]    [Pg.15]    [Pg.55]    [Pg.97]   


SEARCH



Assisted Laser Desorption

Desorption ionization

Laser assisted

Laser desorption

Laser ionization

Laser ionizing

© 2024 chempedia.info