Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid tandem mass spectrometry

The liquid chromatography - tandem mass spectrometry (LC/MS/MS) technique was proposed for the determination of corticosteroids in plasma and cerebrospinal fluid (CSF, liquor) of children with leucosis. Preliminai y sample prepai ation included the sedimentation of proteins, spinning and solid-phase extraction. MS detection was performed by scanning selected ions, with three chai acteristic ions for every corticosteroids. The limit of detection was found 80 pg/ml of plasma. [Pg.351]

The ion spray liquid chromatography/mass spectrometry (LC-MS) interface coupled via a postsuppressor split with an ion chromatography (IC) has been used in the analysis of alcohol sulfates. The IC-MS readily produces the molecular weight while the tandem mass spectrometric detection IC-MS-MS provides structural information [305]. [Pg.285]

Vieno NM, Tuhkanen T, Kronberg L (2006) Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection. J Chromatogr A 1134 101-111... [Pg.223]

Castiglioni S, Zuccato E, Crisci E, Chiabrando C, Fanelly R, Bagnati R (2006) Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry. Anal Chem 78 8421-8429... [Pg.223]

Nikolai LN, McClure EL, MacLeod SL, Wong CS (2006) Stereoisomer quantification of the Beta-blocker drugs atenolol, metoprolol, and propranolol in wastewaters by chiral high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1131 103-109... [Pg.223]

Bijlsma L, Sancho JV, Pitarch E, Ibanez M, Hernandez F (2009) Simultaneous ultra-high-pressure liquid chromatography-tandem mass spectrometry determination of amphetamine and amphetamine-like stimulants, cocaine and its metabolites, and a cannabis metabolite in surface water and urban wastewater. J Chromatogr A 1216(15) 3078-3089... [Pg.224]

Boleda MR, Galceran MT, Ventura F (2007) Trace determination of cannabinoids and opiates in wastewater and surface waters by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1175 38 8... [Pg.224]

Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography-electrospray tandem mass spectrometry. Anal Bioanal Chem 391(4) 1293-1308... [Pg.225]

Postigo C, Lopez De Alda MJ, Barcelo D (2008) Fully automated determination in the low nanogram per liter level of different classes of drugs of abuse in sewage water by on-line solid-phase extraction-liquid chromatography-electrospray-tandem mass spectrometry. Anal Chem 80(9) 3123-3134... [Pg.225]

Kasprzyk-Hordern B, Dlnsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit dmgs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161 132-145... [Pg.226]

Castiglioni S, Bagnati R, Calamari D, Fanelli R, Zuccato E (2005) A multiresidue analytical method using solid-phase extraction and high-pressure liquid chromatography tandem mass spectrometry to measure pharmaceuticals of different therapeutic classes in urban waste-waters. J Chromatogr A 1092 206-215... [Pg.227]

Gros M, Petrovic M, Barcelo D (2006) Development of a multi-residue analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS-MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70 (4) 678-690... [Pg.228]

Q-ToF-LC-MS-MS quadrupole time-of-flight mass analyser in combination with (high performance) liquid chromatography and tandem mass spectrometry... [Pg.16]

Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher. Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher.
Table 5.15 Relative signal responses from various injection volumes for the LC-MS-MS analysis of a wheat forage matrix sample. Reprinted from J. Chromatogr., A, 907, Choi, B. K., Hercules, D. M. and Gusev, A. L, Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression , 337-342, Copyright (2001), with permission from Elsevier Science... Table 5.15 Relative signal responses from various injection volumes for the LC-MS-MS analysis of a wheat forage matrix sample. Reprinted from J. Chromatogr., A, 907, Choi, B. K., Hercules, D. M. and Gusev, A. L, Effect of liquid chromatography separation of complex matrices on liquid chromatography-tandem mass spectrometry signal suppression , 337-342, Copyright (2001), with permission from Elsevier Science...
Figure 5.62 Product-ion MS-MS spectra of the molecular ions from 8-hydroxy-2 -deoxyguanosine, obtained by (a) positive, and (b) negative ionization. Reprinted by permission of Elsevier Science from Comparison of negative- and positive-ion electrospray tandem mass spectrometry for the liquid chromatography-tandem mass spectrometry analysis of oxidized deoxynucleosides , by Hua, Y., Wainhaus, S. B., Yang, Y., Shen, L., Xiong, Y., Xu, X., Zhang, F. Bolton, J. L. and van Breemen, R. B., Journal of the American Society for Mass Spectrometry, Vol. 12, pp. 80-87, Copyright 2000 by the American Society for Mass Spectrometry. Figure 5.62 Product-ion MS-MS spectra of the molecular ions from 8-hydroxy-2 -deoxyguanosine, obtained by (a) positive, and (b) negative ionization. Reprinted by permission of Elsevier Science from Comparison of negative- and positive-ion electrospray tandem mass spectrometry for the liquid chromatography-tandem mass spectrometry analysis of oxidized deoxynucleosides , by Hua, Y., Wainhaus, S. B., Yang, Y., Shen, L., Xiong, Y., Xu, X., Zhang, F. Bolton, J. L. and van Breemen, R. B., Journal of the American Society for Mass Spectrometry, Vol. 12, pp. 80-87, Copyright 2000 by the American Society for Mass Spectrometry.
Anari MR, Sanchez RI, Bakhtiar R, Franklin RB, Baillie TA. Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies application to studies on the biotransformation of indinavir. Anal Chem 2004 76 823-32. [Pg.465]

Wu, X. and Prior, R.L., Identification and characterization of anthocyanins hy high performance liquid chromatography-electrospray ionization-tandem mass spectrometry in common foods in the United States vegetables, nuts, and grains, J. Agric. Food Chem., 53, 3101, 2005. [Pg.84]

Mazzuca, P. et al.. Mass spectrometry in the study of anthocyanins and their derivatives differentiation of Vitis vinifera and hybrid grapes by liquid chromatogra-phy/electrospray ionization mass spectrometry and tandem mass spectrometry, J. Mass Spectrom., 40, 83, 2005. [Pg.271]

Li, H. et ah. Determination of carotenoids and all-fra 5-retinol in fish eggs by liquid chromatography-electrospray ionization-tandem mass spectrometry, J. Chromatogr. B, 816, 49, 2005. [Pg.473]

Tian, Q. et al., Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring, J. Chromatogr. A, 1091, 72, 2005. [Pg.501]

Hvattum, E., Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection, Rapid Commun. Mass Spectrom., 16, 655, 2002. [Pg.503]

Montoro, P. et al., Characterisation by liquid chromatography-electrospray tandem mass spectrometry of anthocyanins in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur, J. Chromatogr. A, 1112, 232, 2006. [Pg.503]

Black, G.E. and Fox, A., Liquid chromatography with electrospray ionization tandem mass spectrometry profiling carbohydrates in whole bacterial cell hydrolysates, in Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry, ACS Symposium Series, Snyder, A.P. and Anaheim, C.A., Fids., Washington, D.C., 1995, chap. 4. [Pg.504]

Seller HR (2002) Analysis of benzylsuccinates in groundwater by liquid chromatography/tandem mass spectrometry and its use for monitoring in situ BTEX biodegradation. Environ Sci Technol 36 2724-2728. [Pg.270]

LC-MS/MS Liquid chromatography coupled with tandem mass spectrometry LC-NMR Liquid chromatography coupled with nuclear magnetic resonance TLC Thin-layer chromatography... [Pg.100]

Li L et al. (2006) Liquid chromatography-tandem mass spectrometry for the identification of L-tetrahydropalmatine metabolites in Penicillium janthinellum and rats. Biomed Chromatogr 20(1) 95-100... [Pg.121]

A further extension of the DFG S19 method was achieved when polar analytes and those unsuitable for GC were determined by LC/MS or more preferably by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Triple-quadrupole MS/MS and ion trap MS" have become more affordable and acceptable in the recent past. These techniques provide multiple analyte methods by employing modes such as time segments, scan events or multiple injections. By improving the selectivity and sensitivity of detection after HPLC separation, the DFG S19 extraction and cleanup scheme can be applied to polar or high molecular weight analytes, and cleanup steps such as Si02 fractionation or even GPC become unnecessary. [Pg.57]


See other pages where Liquid tandem mass spectrometry is mentioned: [Pg.211]    [Pg.225]    [Pg.15]    [Pg.223]    [Pg.273]    [Pg.343]    [Pg.382]    [Pg.4]    [Pg.25]    [Pg.27]    [Pg.55]    [Pg.311]   
See also in sourсe #XX -- [ Pg.147 , Pg.155 , Pg.162 , Pg.171 , Pg.344 ]

See also in sourсe #XX -- [ Pg.64 , Pg.422 , Pg.442 ]




SEARCH



Analysis via Liquid Chromatography-Tandem Mass Spectrometry

High performance liquid chromatography with tandem mass spectrometry , determination

High performance liquid chromatography/atmospheric pressure ionization-tandem mass spectrometry

High-performance liquid chromatography tandem mass spectrometry

Liquid chromatography tandem mass spectrometry drug discovery

Liquid chromatography tandem mass spectrometry equipment

Liquid chromatography tandem mass spectrometry generic methods

Liquid chromatography tandem mass spectrometry materials

Liquid chromatography tandem mass spectrometry methodology

Liquid chromatography tandem mass spectrometry procedure

Liquid chromatography-atmospheric tandem mass spectrometry

Liquid chromatography/tandem mass spectrometry

Liquid chromatography/tandem mass spectrometry Terms

Liquid chromatography—tandem mass spectrometry amino acid sequencing

Mass spectrometry tandem

Multidimensional liquid chromatography tandem mass spectrometry

Tandem spectrometry

Ultra performance liquid chromatography-tandem mass spectrometry , determination

© 2024 chempedia.info