Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquid developments

Fig. 1. Examples for bulk ionic liquids developed in the last three years. Fig. 1. Examples for bulk ionic liquids developed in the last three years.
Eutectic mixtures have been used extensively for applications of molten salts to reduce the operating temperature and this is where the significant area of ionic liquids developed from i.e. the quest to find aluminum-based salt mixtures. While the development of aluminum-containing ionic liquids is technologically very important for the field of metal deposition it is clear that there are many other issues that also need to be addressed and hence methods need to be developed to incorporate a wide range of other metals into ionic liquid formulations. [Pg.32]

The room-temperature chloroaluminate(lll) ionic liquids are the most important members of the first generation of ionic liquids, developed in the second half of the last century The room-temperature halogenoaluminate(III) ionic liquids are extremely sensitive to moisture and must be handled imder an inert atmosphere. Preparation of the halogcno-aluminate(III) ionic liquids is simple a quaternary ammonium (QUAT) halide, e.g. an imidazolium or pyridinium halide, is directly mixed with AICI3 in the ratio necessary to generate the composition required. Upon mixing, an exothermic reaction occurs and the two solids melt into a liquid. The first report on the formation of a room temperature liquid salt, based on the combination of 1-butylpyridinium with AICI3 in the relative molar proportions 1 2 (X =... [Pg.55]

Early interest in ionic liquids developed from work on low melting point haloa-luminate melts, such as NalAlCU]. MX-AIX3 (where M = group 1 cation) melts... [Pg.212]

In 2002 we predicted that non-synthetic applications would have a great chance to be among the first technical ionic liquid applications. This assumption has held true as Chapter 9 clearly proves. Non-synthetic applications are particularly attractive due to their often much shorter development times. Usually, the improvement over existing technology is only based on one or very few specific properties of the ionic liquid, whereas, for most synthetic applications a complex mixture of physicochemical properties in dynamic mixtures has to be considered. This point is well illustrated by the fact that all liquid-liquid biphasic catalysis involves both a reaction and an extraction step. Hence, the ionic liquid catalyst solution has to ftilfil at the same time aU of the requirements to work as a superior reaction medium as well as its role as a suitable extraction medium. The result is a significantly more complex set of material requirements which prolongs the specific ionic liquid development and testing times. [Pg.690]

Imidazolium cation can be functionalized Possibility of using the ionic liquid as both solvent and ligand Possibility of introducing a chirality on the cation Possible combinatorial ionic-liquid development [29]... [Pg.421]

New functionalised ionic liquids from Michael-type reactions —a chance for combinatorial ionic liquid development, Chem. Comm., vol. 39, n°16, pp.2038-2039, (August 2003), ISSN 1359-7345... [Pg.104]

Wasserscheid, P. DriePen-Holscher, B. van Hal, R. Steffens, H. C. Zimmermann, J. (2003). New, functionalised ionic liquids from Michael-typ>e reactions -a chance for combinatorial ionic liquid development. Chem. Commun., 2038-2039 Wilkes, J. S. Zaworotko, M. J. (1992). Air and water stable l-ethyl-3-methylimidazolium based ionic liquids. /, Chem. Soc., Chem. Commun., 965-966... [Pg.737]

T. Welton, Room temperature ionic liquids. Solvents for synthesis and catalysis, Chem Rev 99 2071-2083 1999. C.M. Gordon, New developments in catalysis using ionic liquids, Appl. CatalA General 222 101-117 2001. [Pg.79]

Chapters 1 and 2 have been reorganised and updated in line with recent developments. A new chapter on the Future of Purification has been added. It outlines developments in syntheses on solid supports, combinatorial chemistry as well as the use of ionic liquids for chemical reactions and reactions in fluorous media. These technologies are becoming increasingly useful and popular so much so that many future commercially available substances will most probably be prepared using these procedures. Consequently, a knowledge of their basic principles will be helpful in many purification methods of the future. [Pg.621]

U.S. Air Force Academy in 1961. He was an early researcher in the development of low-temperature molten salts as battery electrolytes. At that time low temperature meant close to 100 °C, compared to many hundreds of degrees for conventional molten salts. His work led directly to the chloroaluminate ionic liquids. [Pg.3]

The alkylation process possesses the advantages that (a) a wide range of cheap haloalkanes are available, and (b) the substitution reactions generally occur smoothly at reasonable temperatures. Furthermore, the halide salts formed can easily be converted into salts with other anions. Although this section will concentrate on the reactions between simple haloalkanes and the amine, more complex side chains may be added, as discussed later in this chapter. The quaternization of amines and phosphines with haloalkanes has been loiown for many years, but the development of ionic liquids has resulted in several recent developments in the experimental techniques used for the reaction. In general, the reaction may be carried out with chloroalkanes, bromoalkanes, and iodoalkanes, with the reaction conditions required becoming steadily more gentle in the order Cl Br I, as expected for nucleophilic substitution reactions. Fluoride salts cannot be formed in this manner. [Pg.9]

The introduction of the more hydrolysis-stable tetrafluoroborate [2] and hexaflu-orophosphate systems [3], and especially the development of their synthesis by means of metathesis from alkali salts [4], can be regarded as a first key step towards commercial ionic liquid production. [Pg.22]

The commercial availability of ionic liquids is thus a key factor for the actual success of ionic liquid methodology. Apart from the matter of lowering the activation barrier for those synthetic chemists interested in entering the field, it allows access to ionic liquids for those communities that do not traditionally focus on synthetic work. Physical chemists, engineers, electrochemists, and scientists interested in developing new analytical tools are among those who have already developed many new exciting applications by use of ionic liquids [11]. [Pg.22]

From our point of view, this is exactly what commercial ionic liquid production is about. Commercial producers try to make ionic liquids in the highest quality that can be achieved at reasonable cost. For some ionic liquids they can guarantee a purity greater than 99 %, for others perhaps only 95 %. If, however, customers are offered products with stated natures and amounts of impurities, they can then decide what kind of purity grade they need, given that they do have the opportunity to purify the commercial material further themselves. Since trace analysis of impurities in ionic liquids is still a field of ongoing fundamental research, we think that anybody who really needs (or believes that they need) a purity of greater than 99.99 % should synthesize or purify the ionic liquid themselves. Moreover, they may still need to develop the methods to specify this purity. [Pg.23]

The future price of ionic liquids will also reflect intellectual property considerations. While the currently most frequently requested ionic liquids, the tetrafluoroborate and hexafluorophosphate ionic liquids, are all patent-free, many recently developed, new ionic liquid systems are protected by state of matter patents. Table 2.2-2 gives an overview of some examples published after 1999. [Pg.31]

Without a doubt, tetrafluoroborate and hexafluorophosphate ionic liquids have shortcomings for larger-scale technical application. The relatively high cost of their anions, their insufficient stability to hydrolysis for long-term application in contact with water (formation of corrosive and toxic HF during hydrolysis ), and problems related to their disposal have to be mentioned here. New families of ionic liquid that should meet industrial requirements in a much better way are therefore being developed. FFowever, these new systems will probably be protected by state of matter patents. [Pg.32]

Despite the utility of chloroaluminate systems as combinations of solvent and catalysts in electrophilic reactions, subsequent research on the development of newer ionic liquid compositions focused largely on the creation of liquid salts that were water-stable [4], To this end, new ionic liquids that incorporated tetrafiuoroborate, hexafiuorophosphate, and bis (trifiuoromethyl) sulfonamide anions were introduced. While these new anions generally imparted a high degree of water-stability to the ionic liquid, the functional capacity inherent in the IL due to the chloroaluminate anion was lost. Nevertheless, it is these water-stable ionic liquids that have become the de rigueur choices as solvents for contemporary studies of reactions and processes in these media [5],... [Pg.33]

The choice of reaction solvent is also of concern in the synthesis of new TSILs. Toluene and acetonitrile are the most widely used solvents, the choice in any given synthesis being dictated by the relative solubilities of the starting materials and products. The use of volatile organic solvents in the synthesis of ionic liquids is decidedly the least green aspect of their chemistry. Notably, recent developments in the area of the solventless synthesis of ionic liquids promise to improve this situation [10]. [Pg.35]

While certain TSILs have been developed to pull metals into the IL phase, others have been developed to keep metals in an IL phase. The use of metal complexes dissolved in IL for catalytic reactions has been one of the most fruitful areas of IL research to date. LLowever, these systems still have a tendency to leach dissolved catalyst into the co-solvents used to extract the product of the reaction from the ionic liquid. Consequently, Wasserscheid et al. have pioneered the use of TSILs based upon the dissolution into a conventional IL of metal complexes that incorporate charged phosphine ligands in their stmctures [16-18]. These metal complex ions become an integral part of the ionic medium, and remain there when the reaction products arising from their use are extracted into a co-solvent. Certain of the charged phosphine ions that form the basis of this chemistry (e.g., P(m-C6H4S03 Na )3) are commercially available, while others may be prepared by established phosphine synthetic procedures. [Pg.37]

Chloroaluminate(III) ionic liquid systems are perhaps the best established and have been most extensively studied in the development of low-melting organic ionic liquids with particular emphasis on electrochemical and electrodeposition applications, transition metal coordination chemistry, and in applications as liquid Lewis acid catalysts in organic synthesis. Variable and tunable acidity, from basic through neutral to acidic, allows for some very subtle changes in transition metal coordination chemistry. The melting points of [EMIM]C1/A1C13 mixtures can be as low as -90 °C, and the upper liquid limit almost 300 °C [4, 6]. [Pg.43]

The early history of ionic liquid research was dominated by their application as electrochemical solvents. One of the first recognized uses of ionic liquids was as a solvent system for the room-temperature electrodeposition of aluminium [1]. In addition, much of the initial development of ionic liquids was focused on their use as electrolytes for battery and capacitor applications. Electrochemical studies in the ionic liquids have until recently been dominated by work in the room-temperature haloaluminate molten salts. This work has been extensively reviewed [2-9]. Development of non-haloaluminate ionic liquids over the past ten years has resulted in an explosion of research in these systems. However, recent reviews have provided only a cursory look at the application of these new ionic liquids as electrochemical solvents [10, 11]. [Pg.103]

The field of reaction chemistry in ionic liquids was initially confined to the use of chloroaluminate(III) ionic liquids. With the development of neutral ionic liquids in the mid-1990s, the range of reactions that can be performed has expanded rapidly. In this chapter, reactions in both chloroaluminate(III) ionic liquids and in similar Lewis acidic media are described. In addition, stoichiometric reactions, mostly in neutral ionic liquids, are discussed. Review articles by several authors are available, including Welton [1] (reaction chemistry in ionic liquids), Holbrey [2] (properties and phase behavior), Earle [3] (reaction chemistry in ionic liquids), Pagni [4] (reaction chemistry in molten salts), Rooney [5] (physical properties of ionic liquids), Seddon [6, 7] (chloroaluminate(III) ionic liquids and industrial applications), Wasserscheid [8] (catalysis in ionic liquids), Dupont [9] (catalysis in ionic liquids) and Sheldon [10] (catalysis in ionic liquids). [Pg.174]

The author anticipates that the further development of transition metal catalysis in ionic liquids will, to a significant extent, be driven by the availability of new ionic liquids with different anion systems. In particular, cheap, halogen-free systems combining weak coordination to electrophilic metal centers and low viscosity with high stability to hydrolysis are highly desirable. [Pg.216]

Because of the great importance of liquid-liquid biphasic catalysis for ionic liquids, all of Section 5.3 is dedicated to specific aspects relating to this mode of reaction, with special emphasis on practical, technical, and engineering needs. Finally, Section 5.4 summarizes a very interesting recent development for biphasic catalysis with ionic liquids, in the form of the use of ionic liquid/compressed CO2 biphasic mixtures in transition metal catalysis. [Pg.220]

In the following section, the nature of the chemical interactions between an ionic liquid and a transition metal catalyst is systematically developed according to the role of the ionic liquid in the different systems. [Pg.220]

Many transition metal-catalyzed reactions have already been studied in ionic liquids. In several cases, significant differences in activity and selectivity from their counterparts in conventional organic media have been observed (see Section 5.2.4). However, almost all attempts so far to explain the special reactivity of catalysts in ionic liquids have been based on product analysis. Even if it is correct to argue that a catalyst is more active because it produces more product, this is not the type of explanation that can help in the development of a more general understanding of what happens to a transition metal complex under catalytic conditions in a certain ionic liquid. Clearly, much more spectroscopic and analytical work is needed to provide better understanding of the nature of an active catalytic species in ionic liquids and to explain some of the observed ionic liquid effects on a rational, molecular level. [Pg.226]

Obviously, with the development of the first catalytic reactions in ionic liquids, the general research focus turned away from basic studies of metal complexes dissolved in ionic liquids. Today there is a clear lack of fundamental understanding of many catalytic processes in ionic liquids on a molecular level. Much more fundamental work is undoubtedly needed and should be encouraged in order to speed up the future development of transition metal catalysis in ionic liquids. [Pg.229]

Another interesting recent development is the continuous, Rh-catalyzed hydroformylation of 1-octene in the unconventional biphasic system [BMIM][PF6]/scC02, described by Cole-Hamilton et al. [84]. This specific example is described in more detail, together with other recent work in ionic liquid/scC02 systems, in Section 5.4. [Pg.240]

From these results, the Institut Fran ais du Petrole (IFF) has developed a biphasic version of its established monophasic Dimersol process , which is offered for licensing under the name Difasol process [98]. The Difasol process uses slightly acidic chloroaluminate ionic liquids with small amounts of allcylaluminiums as the solvent for the catalytic nickel center. In comparison to the established Dimersol process , the new biphasic ionic liquid process drastically reduces the consumption of Ni-cata-lyst and allcylaluminiums. Additional advantages arise from the good performance obtained with highly diluted feedstodcs and the significantly improved dimer selectivity of the Difasol process (for more detailed information see Section 5.3). [Pg.246]

For this specific task, ionic liquids containing allcylaluminiums proved unsuitable, due to their strong isomerization activity [102]. Since, mechanistically, only the linkage of two 1-butene molecules can give rise to the formation of linear octenes, isomerization activity in the solvent inhibits the formation of the desired product. Therefore, slightly acidic chloroaluminate melts that would enable selective nickel catalysis without the addition of alkylaluminiums were developed [104]. It was found that an acidic chloroaluminate ionic liquid buffered with small amounts of weak organic bases provided a solvent that allowed a selective, biphasic reaction with [(H-COD)Ni(hfacac)]. [Pg.247]


See other pages where Ionic liquid developments is mentioned: [Pg.186]    [Pg.216]    [Pg.186]    [Pg.216]    [Pg.153]    [Pg.72]    [Pg.25]    [Pg.2]    [Pg.2]    [Pg.12]    [Pg.16]    [Pg.39]    [Pg.39]    [Pg.85]    [Pg.109]    [Pg.217]    [Pg.234]    [Pg.239]    [Pg.253]    [Pg.261]   
See also in sourсe #XX -- [ Pg.440 , Pg.441 , Pg.442 ]




SEARCH



Development of ionic liquids

Liquid development

© 2024 chempedia.info