Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Haloaluminate ionic liquid

The viscosities of non-haloaluminate ionic liquids are also affected by the identity of the organic cation. For ionic liquids with the same anion, the trend is that larger allcyl substituents on the imidazolium cation give rise to more viscous fluids. For instance, the non-haloaluminate ionic liquids composed of substituted imidazolium cations and the bis-trifyl imide anion exhibit increasing viscosity from [EMIM], [EEIM], [EMM(5)IM], [BEIM], [BMIM], [PMMIM], to [EMMIM] (Table 3.2-1). Were the size of the cations the sole criteria, the [BEIM] and [BMIM] cations from this series would appear to be transposed and the [EMMIM] would be expected much earlier in the series. Given the limited data set, potential problems with impurities, and experimental differences between laboratories, we are unable to propose an explanation for the observed disparities. [Pg.64]

The addition of co-solvents to ionic liquids can result in dramatic reductions in the viscosity without alteration of the cations or anions in the system. The haloaluminate ionic liquids present a challenge, due to the reactivity of the ionic liquid. Nonetheless, several compatible co-solvents including benzene, dichloromethane, and acetonitrile have been investigated [33-37]. The addition of as little as 5 wt. % acetonitrile or 15 wt. % benzene or methylene chloride was able to reduce the... [Pg.64]

In the binary haloaluminate ionic liquids, an increase in the mole percent of the imidazolium salt decreases the density of the liquid (see Table 3.2-2). The bromo-aluminate ionic liquids are substantially denser than their chloroaluminate counterparts, being between 0.57 g cm and 0.83 g cm denser than the analogous chloroaluminate ionic liquids (see Table 3.2-2). Variation of the substituents on the imidazolium cation in the chloroaluminate ionic liquids has been shown to affect the density on the basis of the cation size [17]. [Pg.66]

The early history of ionic liquid research was dominated by their application as electrochemical solvents. One of the first recognized uses of ionic liquids was as a solvent system for the room-temperature electrodeposition of aluminium [1]. In addition, much of the initial development of ionic liquids was focused on their use as electrolytes for battery and capacitor applications. Electrochemical studies in the ionic liquids have until recently been dominated by work in the room-temperature haloaluminate molten salts. This work has been extensively reviewed [2-9]. Development of non-haloaluminate ionic liquids over the past ten years has resulted in an explosion of research in these systems. However, recent reviews have provided only a cursory look at the application of these new ionic liquids as electrochemical solvents [10, 11]. [Pg.103]

It must be noted that impurities in the ionic liquids can have a profound impact on the potential limits and the corresponding electrochemical window. During the synthesis of many of the non-haloaluminate ionic liquids, residual halide and water may remain in the final product [13]. Halide ions (Cl , Br , I ) are more easily oxidized than the fluorine-containing anions used in most non-haloaluminate ionic liquids. Consequently, the observed anodic potential limit can be appreciably reduced if significant concentrations of halide ions are present. Contamination of an ionic liquid with significant amounts of water can affect both the anodic and the cathodic potential limits, as water can be both reduced and oxidized in the potential limits of many ionic liquids. Recent work by Schroder et al. demonstrated considerable reduction in both the anodic and cathodic limits of several ionic liquids upon the addition of 3 % water (by weight) [14]. For example, the electrochemical window of dry [BMIM][BF4] was found to be 4.10 V, while that for the ionic liquid with 3 % water by weight was reduced to 1.95 V. In addition to its electrochemistry, water can react with the ionic liquid components (especially anions) to produce products... [Pg.104]

The room temperature conductivity data for a wide variety of ionic liquids are listed in Tables 3.6-3, 3.6-4, and 3.6-5. These tables are organized by the general type of ionic liquid. Table 3.6-3 contains data for imidazolium-based non-haloaluminate alkylimidazolium ionic liquids. Table 3.6-4 data for the haloaluminate ionic liquids, and Table 3.6-5 data for other types of ionic liquids. There are multiple listings for several of the ionic liquids in Tables 3.6-3-3.6-5. These represent measurements by different researchers and have been included to help emphasize the significant vari-... [Pg.111]

Transport numbers for several non-haloaluminate ionic liquids generated from ionic liquid self-diffusion coefficients are listed in Table 3.6-7. The interesting, and still open, question is whether the NMR-generated transport numbers provide the same measure of the fraction of current carried by an ion as the electrochemically... [Pg.121]

It is unclear at this time whether this difference is due to the different anions present in the non-haloaluminate ionic liquids or due to differences in the two types of transport number measurements. The apparent greater importance of the cation to the movement of charge demonstrated by the transport numbers (Table 3.6-7) is consistent with the observations made from the diffusion and conductivity data above. Indeed, these data taken in total may indicate that the cation tends to be the majority charge carrier for all ionic liquids, especially the allcylimidazoliums. However, a greater quantity of transport number measurements, performed on a wider variety of ionic liquids, will be needed to ascertain whether this is indeed the case. [Pg.123]

Specific conductivity data for binary haloaluminate ionic liquids. [Pg.62]

Table 3.6-1 The room-temperature electrochemical potential windows for non-haloaluminate ionic liquids. Table 3.6-1 The room-temperature electrochemical potential windows for non-haloaluminate ionic liquids.
Hussey, C.L., Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry. Pure Appl. Chem., 60,1763-1772,1988. [Pg.304]

The composition of haloaluminate ionic liquids is often described by the mole fraction... [Pg.16]

Analysis of haloaluminate ionic liquids is much more limited than that of other ionic liquids. The most important analytical technique is surely NMR spectroscopy. The determination of residual water is difficult because of the instability of these materials. Hence it is crucial to work accurately to achieve the best results. [Pg.21]

Within a series of non-haloaluminate ionic liquids containing the same cation, a change in the anion clearly affects the viscosity (Tables 3.2-1 and 3.2-3). The general order of increasing viscosity with respect to the anion is [(CF3S02)2N] <... [Pg.375]


See other pages where Haloaluminate ionic liquid is mentioned: [Pg.59]    [Pg.64]    [Pg.64]    [Pg.65]    [Pg.66]    [Pg.66]    [Pg.105]    [Pg.123]    [Pg.127]    [Pg.59]    [Pg.64]    [Pg.64]    [Pg.64]    [Pg.65]    [Pg.104]    [Pg.105]    [Pg.123]    [Pg.23]    [Pg.312]    [Pg.105]    [Pg.123]    [Pg.370]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Haloaluminate

© 2024 chempedia.info