Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids catalysis with

Room-temperature ionic liquids, salts with A,A-dialkylimidazolium cations in synthesis and catalysis 99CRV2071. [Pg.253]

For this specific task, ionic liquids containing allcylaluminiums proved unsuitable, due to their strong isomerization activity [102]. Since, mechanistically, only the linkage of two 1-butene molecules can give rise to the formation of linear octenes, isomerization activity in the solvent inhibits the formation of the desired product. Therefore, slightly acidic chloroaluminate melts that would enable selective nickel catalysis without the addition of alkylaluminiums were developed [104]. It was found that an acidic chloroaluminate ionic liquid buffered with small amounts of weak organic bases provided a solvent that allowed a selective, biphasic reaction with [(H-COD)Ni(hfacac)]. [Pg.247]

An excellent demonstration of the tunability of ionic liquids for catalysis is provided by an investigation of the dimerization of 1-butene (235). A Ni(cod)(hfacac) catalyst (Scheme 23) was evaluated for the selective dimerization of 1-butene after it was dissolved in various chloroaluminate ionic liquids. Earlier work on this reaction with the same catalyst in toluene led to the observations of low activity and difficult catalyst separation. In ionic liquids of varying acidity, little catalytic activity was found. However, a remarkable activity was achieved by adding a weak buffer base to an acidic ionic liquid. The reaction took place in a biphasic reaction mode with facile catalyst separation and catalyst recycling. A high selectivity to the dimer product was obtained because of a fast extraction of the Cg product from the ionic liquid phase, with the minimization of consecutive reaction to give trimers. Among a number of weak base buffers, a chinoline was chosen. The catalyst performance was compared with that in toluene. The catalyitc TOF at 90°C in toluene was... [Pg.210]

In an extension of the work to chiral chemistry 244), the imidazolium cation of the ionic liquid was modified to carry a chiral substituent. The high cost of the chiral cation could be justified as the chiral ionic liquid, [MBMIM ] , can be reused. In the ATRP of soluble methyl acrylate, a small effect of the chiral ionic liquid on the polymer tacticity was observed. The use of a chiral ionic liquid as a solvent could lead to applications in other areas of catalysis. The synthesis of imidazolium-containing ionic liquids functionalized with chiral natural amino acids has already been reported 245), as have less expensive chiral ionic liquids(2- (5). [Pg.214]

Hardacre et al. report the Friedel-Crafts benzoylation of anisole with benzoic anhydride to yield 4-methoxybenzophenone with various ILs and zeolite catalysts (USY, HZSM-5, H-beta, and H-mordenite). The rates of reaction were found to be significantly higher using ionic liquids compared with organic solvents.Continuous-flow studies of successful ionic liquid systems indicate that the bulk of the catalysis is due to the formation of an acid via the ion exchange of the cation with the protons of the zeolite as shown in the following reaction. Scheme 8. [Pg.165]

The major problem associated with aqueous catalysis is the limited and often very low solubility of certain organic reactants in water. Much work is needed to find practical solutions for these hydrophobic reactants. Possibilities deserving further attention include the application of fluorous biphasic catalysis or nonaqueous ionic liquid catalysis. The potential of organic reactions compatible with or even promoted by water is not yet fully exploited. [Pg.501]

Water has several attractive features as a solvent and, as we have said elsewhere, the best solvent is no solvent, but if one has to use a solvent then let it be water. Water is the most abundant molecule on the planet and is, hence, readily available and inexpensive. It is nonflammable and incombustible and odorless and colorless (making contamination easy to spot). It has a high thermal conductivity, heat capacity and heat of evaporation, which means that exothermic reactions can be controlled effectively. It readily separates from organic solvents owing to its polarity, density and because of the hydrophobic effect [12], which makes it eminently suitable for biphasic catalysis. Indeed, water forms biphasic systems with many organic solvents, with fluorous solvents, some ionic liquids and with scC02 [13]. [Pg.300]

The hydroformylation of 1-hexene by supported ionic liquid catalysis (SILC) was recently reported by researchers at ExxonMobil. In this system, the active catalyst HRh(CO)(tppti)3 (tppti = tri(m-sulfonyl)triphenyl phosphine tris(l-butyl-3-methyl-imidazolium)) is contained within the ionic liquid phase while excess tppti ligand is immobilized in the support material. TOP values of 65 min" were obtained with silc while an unsupported biphasic ionic liquid medium gave TOP values of 23 min. ... [Pg.674]

The concept of supported ionic liquid catalysis involves the surface of a support material that is modified with a monolayer of covalently attached ionic liquid fragments. Treating this surface with additional ionic liquid results in the formation of multiple layers of free ionic liquid on the support material. These layers serve as the reaction phase in which a homogeneous hydroformylation catalyst was dissolved. The concept of supported ionic liquid catalysis has successfully been used for hydroformylation reactions ]81]. [Pg.177]

Gompared to other wide-bite-angle diphosphine ligands, xantphos-type ligands can be modified easily while retaining their favorable properties, especially in hydroformylation, and as a result many derivatives have been synthesized by several groups and used in fluorous-phase hydroformylation catalysis, aqueous phase catalysis, one-phase hydroformylation and catalyst extraction, catalysis in ionic liquids, hydroformylation with immobilized catalysts, and catalysis in supercritical G02. ... [Pg.251]

Ueno, K. Tokuda, H. Watanabe, M, (2010). lonicity in Ionic Liquids Correlation with Ionic Structure and Physicochemical Properties. Phys. Chem. Chem. Phys., 12,1649-16548, Welton, T. (1999). Room-Temjjerature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev, 99,2071-2083. [Pg.109]

Ionic liquids formed with metal complex anions have been used as green solvents for catalysis. For example, [C4MI][Co" (CO)4] is active for the catalytic debromination of 2-... [Pg.728]

Transition metal catalysis in liquid/liquid biphasic systems principally requires sufficient solubility and immobilization of the catalysts in the IL phase relative to the extraction phase. Solubilization of metal ions in ILs can be separated into processes, involving the dissolution of simple metal salts (often through coordination with anions from the ionic liquid) and the dissolution of metal coordination complexes, in which the metal coordination sphere remains intact. [Pg.70]

The field of reaction chemistry in ionic liquids was initially confined to the use of chloroaluminate(III) ionic liquids. With the development of neutral ionic liquids in the mid-1990s, the range of reactions that can be performed has expanded rapidly. In this chapter, reactions in both chloroaluminate(III) ionic liquids and in similar Lewis acidic media are described. In addition, stoichiometric reactions, mostly in neutral ionic liquids, are discussed. Review articles by several authors are available, including Welton [1] (reaction chemistry in ionic liquids), Holbrey [2] (properties and phase behavior), Earle [3] (reaction chemistry in ionic liquids), Pagni [4] (reaction chemistry in molten salts), Rooney [5] (physical properties of ionic liquids), Seddon [6, 7] (chloroaluminate(III) ionic liquids and industrial applications), Wasserscheid [8] (catalysis in ionic liquids), Dupont [9] (catalysis in ionic liquids) and Sheldon [10] (catalysis in ionic liquids). [Pg.174]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]

The first example of homogeneous transition metal catalysis in an ionic liquid was the platinum-catalyzed hydroformylation of ethene in tetraethylammonium trichlorostannate (mp. 78 °C), described by Parshall in 1972 (Scheme 5.2-1, a)) [1]. In 1987, Knifton reported the ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [Bu4P]Br, a salt that falls under the now accepted definition for an ionic liquid (see Scheme 5.2-1, b)) [2]. The first applications of room-temperature ionic liquids in homogeneous transition metal catalysis were described in 1990 by Chauvin et al. and by Wilkes et ak. Wilkes et al. used weekly acidic chloroaluminate melts and studied ethylene polymerization in them with Ziegler-Natta catalysts (Scheme 5.2-1, c)) [3]. Chauvin s group dissolved nickel catalysts in weakly acidic chloroaluminate melts and investigated the resulting ionic catalyst solutions for the dimerization of propene (Scheme 5.2-1, d)) [4]. [Pg.214]

However, a number of limitations are still evident when tetrafluorohorate and hexafluorophosphate ionic liquids are used in homogeneous catalysis. The major aspect is that these anions are still relatively sensitive to hydrolysis. The tendency to anion hydrolysis is of course much less pronounced than that of the chloroalu-minate melts, hut it still occurs and this has major consequences for their use in transition metal catalysis. For example, the [PF ] anion of l-hutyl-3-methylimida-2olium ([BMIM]) hexafluorophosphate was found (in the author s laboratories) to hydrolyze completely after addition of excess water when the sample was kept for 8 h at 100 °C. Gaseous HF and phosphoric acid were formed. Under the same conditions, only small amounts of the tetrafluorohorate ion of [BMlMjjBFJ was converted into HF and boric acid [10]. The hydrolytic formation of HF from the anion of the ionic liquid under the reaction conditions causes the following problems with... [Pg.215]

In this context, the use of ionic liquids with halogen-free anions may become more and more popular. In 1998, Andersen et al. published a paper describing the use of some phosphonium tosylates (all with melting points >70 °C) in the rhodium-catalyzed hydroformylation of 1-hexene [13]. More recently, in our laboratories, we found that ionic liquids with halogen-free anions and with much lower melting points could be synthesized and used as solvents in transition metal catalysis. [BMIM][n-CgHi7S04] (mp = 35 °C), for example, could be used as catalyst solvent in the rhodium-catalyzed hydroformylation of 1-octene [14]. [Pg.216]

The author anticipates that the further development of transition metal catalysis in ionic liquids will, to a significant extent, be driven by the availability of new ionic liquids with different anion systems. In particular, cheap, halogen-free systems combining weak coordination to electrophilic metal centers and low viscosity with high stability to hydrolysis are highly desirable. [Pg.216]

Very recently, Olivier-Bourbigou and Magna [15], Sheldon [16], and Gordon [17] have published three excellent reviews presenting a comprehensive overview of current work in transition metal catalysis involving ionic liquids, with slightly different emphases. All three update previously published reviews on the same topic, by Wasserscheid and Keim [18], Welton [19] and Seddon and Holbrey [20]. [Pg.216]

Because of the great importance of liquid-liquid biphasic catalysis for ionic liquids, all of Section 5.3 is dedicated to specific aspects relating to this mode of reaction, with special emphasis on practical, technical, and engineering needs. Finally, Section 5.4 summarizes a very interesting recent development for biphasic catalysis with ionic liquids, in the form of the use of ionic liquid/compressed CO2 biphasic mixtures in transition metal catalysis. [Pg.220]


See other pages where Ionic liquids catalysis with is mentioned: [Pg.187]    [Pg.140]    [Pg.95]    [Pg.7]    [Pg.42]    [Pg.75]    [Pg.14]    [Pg.372]    [Pg.27]    [Pg.196]    [Pg.66]    [Pg.496]    [Pg.252]    [Pg.153]    [Pg.77]    [Pg.26]    [Pg.39]    [Pg.214]    [Pg.220]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Catalysis ionic

Ionic liquids catalysis

Ionic liquids, multiphase catalysis with

Liquid catalysis

MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS - ENGINEERING ASPECTS

© 2024 chempedia.info