Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Disinfectant examples

Trisodium phosphate is strongly alkaline many of its appHcations depend on this property. For example, many heavy-duty cleaning compositions contain trisodium phosphate as a primary alkalinity source. The crystalline dodecahydrate itself is marketed as a cleaning compound and paint remover. Traditionally, trisodium phosphate has been used in water softening to remove polyvalent metal ions by precipitation as insoluble phosphates. Because the hypochlorite complex of trisodium phosphate provides solutions that are strongly alkaline and contain active chlorine, it is used in disinfectant cleaners, scouring powders, and automatic dishwashing formulations. [Pg.332]

Polysulfones also offer desirable properties for cookware appHcations, eg, microwave transparency and environmental resistance to most common detergents. Resistance to various sterilizing media (eg, steam, disinfectants, and gamma radiation) makes polysulfones the resin family of choice for many medical devices. Uses in the electrical and electronic industry include printed circuit boards, circuit breaker components, connectors, sockets, and business machine parts, to mention a few. The good clarity of PSF makes it attractive for food service and food processing uses. Examples of appHcations in this area include coffee decanters and automated dairy processing components. [Pg.469]

Medical Usage. Isopropyl alcohol is also used as an antiseptic and disinfectant for home, hospital, and industry (see Disinfectants and antiseptics). It is about twice as effective as ethyl alcohol in these appHcations (153,154). Rubbing alcohol, a popular 70 vol % isopropyl alcohol-in-water mixture, exemplifies the medicinal use of isopropyl alcohol. Other examples include 30 vol % isopropyl alcohol solutions for medicinal liniments, tinctures of green soap, scalp tonics, and tincture of mercurophen. It is contained in pharmaceuticals, eg, local anesthetics, tincture of iodine, and bathing solutions for surgical sutures and dressings. Over 200 uses of isopropyl alcohol have been tabulated (2). [Pg.113]

The threat of accidental misuse of quaternary ammonium compounds coupled with potential harmful effects to sensitive species of fish and invertebrates has prompted some concern. Industry has responded with an effort to replace the questionable compounds with those of a more environmentally friendly nature. Newer classes of quaternaries, eg, esters (206) and betaine esters (207), have been developed. These materials are more readily biodegraded. The mechanisms of antimicrobial activity and hydrolysis of these compounds have been studied (207). AppHcations as surface disinfectants, antimicrobials, and in vitro microbiocidals have also been reported. Examples of ester-type quaternaries are shown in Figure 1. [Pg.379]

SuperchlorinationShock Treatment. Superchlorination or shock treatment of pool water is necessary since accumulation of organic matter, nitrogen compounds, and algae consumes free available chlorine and impedes disinfection. Reaction of chlorine with constituents of urine or perspiration (primarily NH" 4, amino acids, creatinine, uric acid, etc) produces chloramines (N—Cl compounds) which are poor disinfectants because they do not hydrolyze significantly to HOCl (19). For example, monochloramine (NH2CI) is only 1/280 as effective as HOCl against E. coli (20). [Pg.298]

Disinfection. The disinfection efficiency of /V-ha1amines is related to the extent of hydrolysis to hypohalous acid. For example, NH2CI (Kf 10 ) is a poor bactericide compared to HOCl (5). By contrast, monochloroisocyanurate 10 ) exhibits good bactericidal properties (6). [Pg.453]

Stable A/-chloro compounds are formed by reaction of hypochlorous acid and appropriate N—H compounds. For example, HOCl, formed in situ via chlorine hydrolysis, converts di- or trisodium cyanurates to dichloro- and trichloroiso-cyanuric acids, respectively (114). Chloroisocyanurates can also be prepared from isocyanuric acid or monosodium cyanurate and preformed HOCl (115—117). Hydrolysis of chloroisocyanurates provide HOCl for use in swimming pool disinfection and in bleaching appHcations. [Pg.468]

Disinfectant Formulations and Sterilization. Hundreds of appHcations covering disinfectant compositions using sodium chlorite have been described in U.S. and foreign patents. Some examples of these are as antimicrobial additives for latexes (166), marine antifouling agents (see Coatings, marine) (167,168), antimildew detergent compositions (169), toothpaste and solution compositions for prevention and treatment of periodontal oral disease (see Dentifrices) (170—172), and compositions for the disinfection of contact lenses (qv) (173). [Pg.489]

Antimicrobial agents don t necessarily fall into only one category. For example, a stedlant under various conditions that could affect its action, such as time, temperature, pH, concentration, and presence of organic matter, might become less potent and act only as a disinfectant, a bactericide, or a sanitizer. Likewise, the reverse situation is also possible—a weaker agent under favorable conditions can exert greater activity and move up in category. [Pg.121]

Tuberculocidal Test. The tubercle bacillus is resistant to disinfectants because the cells are protected with a waxy coating that is not readily penetrated. The tuberculocidal test is a use dilution practical type test that employs porcelain cylinders. The bacteria are different from those in the use dilution method (Table 10), the incubation time is longer, and the details of the procedure are different. For example, in the tuberculocidal test the test is divided into two parts, a presumptive test and a confirmatory test. The former employs Mycobacterium smegmatis and the latter employs Mycobacterium bovis (BCG). For the presumptive test the incubation time is 12 days, as against 48 hours for other bacteria used in the use-dilution method. For the confirmatory test the incubation time is 60 days, with an additional 30 days in case there is no growth. As shown in Table 10, the concentrations of the phenol standard are higher than used with other bacteria. [Pg.139]

Seek alternatives to chlorine for water treatment and disinfecting applications. For example, sodium hypochlorite has been used both in industrial and municipal water treatment applications (Somerville, 1990). Other alternatives include calcium hypochlorite, ozone, ultraviolet radiation and heat treatment (Negron, 1994 Mizerek, 1996). [Pg.84]

Fig. 2 Examples of treatment trains including disinfection through intensive or extensive processes for water reuse in agriculture and other applications implemented in different countries [16]... Fig. 2 Examples of treatment trains including disinfection through intensive or extensive processes for water reuse in agriculture and other applications implemented in different countries [16]...
On the other hand, Palma de Mallorca is also a successful example of urban water reuse within an integrated water management framework. Since the end of the nineties, tertiary treated (coagulation, flocculation, sand filtration and gaseous chloride disinfection) water is used for public parks, landscape and golf courses irrigation. About 7 Mm year are currently used, thus saving equal amounts of potable water. This is the most efficient water reuse apphcation in Palma. [Pg.104]

It is only very recently that organic componnds synthesized by humans have begun to exert a selection pressure upon natural populations, with the consequent emergence of resistant strains. Pesticides are a prime example and will be the principal subject of the present section. It should be mentioned, however, that other types of biocides (e.g., antibiotics and disinfectants) can produce a similar response in microbial populations that are exposed to them. [Pg.93]

It would be diflBcult to estimate the quantity of TGDD which enters the environment each year. In addition to the common pesticides listed in Table I, other chlorophenols nd their derivatives are used widely. For example, large amounts of the disinfectant, hexachlorophene (2,2 -methylenebis(3,4,6-trichlorophenol)), are used in homes, hospitals, and industry, and the Dowcides 2 and B (2,4,5-trichlorophenol and its sodium salt) are industrial microbiocides. More than 50,000,000 lbs of trichloro-phenol are made in the United States each year (24), and much of it eventually must be dispersed in the environment. The dioxin content seems to be variable but is generally below 0.5 ppm (25). [Pg.52]

Phenol was originally recovered during the coking of coal, essentially being a by-product. Eventually, commercial routes were developed based on benzene (from coal or petroleum) for example, sulfonation of benzene to ben-zenesulfonic acid followed by reaction with water to phenol plus regenerated sulfuric acid. Phenol is used to make plastics (phenol-formaldehyde and epoxy resins) and textile fibers (nylon). Phenol is also used in solution as a general disinfectant for cleaning toilets, stables, floors, drains, etc. and is used both internally and externally as a disinfectant for animals. [Pg.87]

Lactide/glycolide polymers have been investigated for delivery of agents in applications outside the pharmaceutical field. For example, the microbiocidal properties of chlorine dioxide disinfectants have been improved by formulating a long-acting chlorine dioxide system based on lactide/glycolide copolymers. Blends of microspheres based on 50 50 and 87 13 copolymers were developed to afford the release of chlorine dioxide over several months (114). [Pg.24]

The intended application of an antimicrobial agent, whether for preservation, antisepsis or disinfection, will influence its selection and also affect its performance. For example, in medicinal preparations the ingredients in the formulation may antagonize preservative activity. The risk to the patient will depend on whether the antimicrobial is in close contact with a break in the skin or mucous membranes or is introduced into a sterile area of the body. [Pg.207]

Table 10.6 Examples of the main antimicrobial groups as antiseptics, disinfectants and presenratives... [Pg.210]

A number of organic chlorine, or chloramine, compounds are now available for disinfection and antisepsis. These are the N-chloro (=N-C1) derivatives of, for example, sulphonamides giving compounds such as chloramine-T and dichloramine-T and halazone (Fig. 10.5), which may be used for the disinfection of contaminated drinking water. [Pg.218]

Many derivatives of phenol are now made by a synthetic process. Homologous series of substituted derivatives have been prepared and tested for antimicrobial activity. A combination of alkyl substitution and halogenation has produced useful derivatives including clorinated phenols which are constituents of a number of proprietary disinfectants. Two ofthe most widely used derivatives are/ -chloro-m-cresol (4-chloro-3-methylphenol, chlorocresol, Fig. 10.7C) which is mostly employed as a preservative at a concentration of 0.1%, and / -chloro-m-xylenol (4-chloro-3,5-dimethylphenol, chloroxylenol. Fig. 10.7C) which is used for skin disinfection, although less than formerly. Chloroxylenol is sparingly soluble in water and must be solubihzed, for example in a suitable soap solution in conjunction with terpineol or pine oil. Its antimicrobial capacity is weak and is reduced by the presence of organic matter. [Pg.224]

As is apparent from the above information, there is no ideal disinfectant, antiseptic or preservative. All chemical agents have their limitations either in terms of their antimicrobial activity, resistance to organic matter, stability, incompatibility, irritancy, toxicity or corrosivity. To overcome the limitations of an individual agent, formulations consisting of combinations of agents are available. For example, ethanol has been combined with chlorhexidine and iodine to produce more active preparations. The combination of chlorhexidine and cetrimide is also considered to improve activity. QACs and phenols have been combined with glutaraldehyde so that the same effect can be achieved with lower, less irritant concentrations of glutaraldehyde. Some... [Pg.226]

Table 11.3 Hypothetical example ef a quantitative suspensien test procedure (disinfectant used fer 5 minutes at 20°C)... [Pg.240]


See other pages where Disinfectant examples is mentioned: [Pg.318]    [Pg.144]    [Pg.501]    [Pg.29]    [Pg.93]    [Pg.301]    [Pg.125]    [Pg.130]    [Pg.139]    [Pg.140]    [Pg.229]    [Pg.10]    [Pg.14]    [Pg.356]    [Pg.417]    [Pg.465]    [Pg.478]    [Pg.480]    [Pg.485]    [Pg.6]    [Pg.245]    [Pg.201]    [Pg.215]    [Pg.224]    [Pg.227]    [Pg.227]    [Pg.239]   
See also in sourсe #XX -- [ Pg.386 , Pg.387 ]




SEARCH



Disinfect

Disinfectants

Disinfection

Disinfection examples

Disinfection examples

© 2024 chempedia.info