Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

With chlorine

In early designs, the reaction heat typically was removed by cooling water. Crude dichloroethane was withdrawn from the reactor as a liquid, acid-washed to remove ferric chloride, then neutralized with dilute caustic, and purified by distillation. The material used for separation of the ferric chloride can be recycled up to a point, but a purge must be done. This creates waste streams contaminated with chlorinated hydrocarbons which must be treated prior to disposal. [Pg.285]

CH2=CHC = CCH = CH2. a colourless liquid which turns yellow on exposure to the air it has a distinct garlic-like odour b.p. 83-5°C. Manufactured by the controlled, low-temperature polymerization of acetylene in the presence of an aqueous solution of copper(I) and ammonium chlorides. It is very dangerous to handle, as it absorbs oxygen from the air to give an explosive peroxide. When heated in an inert atmosphere, it polymerizes to form first a drying oil and finally a hard, brittle insoluble resin. Reacts with chlorine to give a mixture of chlorinated products used as drying oils and plastics. [Pg.145]

Carbon monoxide forms addition compounds. With chlorine in sunlight or in the presence of charcoal in the dark, carbonyl chloride... [Pg.179]

Stannic chloride is prepared by treating metallic tin with chlorine Sn + 2C1 SnCl4... [Pg.199]

White and red phosphorus combine directly with chlorine, bromine and iodine, the red allotrope reacting in each case at a slightly higher temperature. The reactions are very vigorous and white phosphorus is spontaneously inflammable in chlorine at room temperature. Both chlorine and bromine first form a trihalide ... [Pg.213]

A similar reaction occurs with chlorine, to give nitrosyl chloride... [Pg.231]

Phosphorus trichloride reacts with chlorine in excess to give phosphorus pentachloride, an equilibrium being set up ... [Pg.250]

However, phosphorus pentachloride in the solid state has an ionic lattice built up of (PC ) and (PClg)" ions and these ions are believed to exist in certain solvents. Thus under these conditions the maximum covalency is reached with chlorine. In phosphorus pentabromide, PBrj, the solid has the structure [PBr4] [Br] . [Pg.251]

On the industrial scale, bromine is obtained from sea water by using the displacement reaction with chlorine (the reaction by which bromine was discovered) ... [Pg.318]

The sea water is first treated with chlorine in acid solution (sulphuric acid is added) and very dilute bromine is obtained by blowing air through the solution. This is mixed with sulphur dioxide and the gases passed up a tower down which water trickles ... [Pg.318]

The mixture of the two acids (now much richer in bromine than the sea water) is then treated with chlorine again, and bromine... [Pg.318]

Only chloric(III) acid, HCIO2, is definitely known to exist. It is formed as one of the products of the reaction of water with chlorine dioxide (see above). Its salts, for example NaClOj, are formed together with chlorates)V) by the action of chlorine dioxide on alkalis. Sodium chlorate(III) alone may be obtained by mixing aqueous solutions of sodium peroxide and chlorine dioxide ... [Pg.339]

Ironilll) chloride is a black, essentially covalent solid, in which each iron atom is surrounded octahedrally by six chlorine atoms. It is prepared by direct combination of iron with chlorine or by dehydration of the hydrated chloride, by one of the methods given on p.343). [Pg.394]

Originally, general methods of separation were based on small differences in the solubilities of their salts, for examples the nitrates, and a laborious series of fractional crystallisations had to be carried out to obtain the pure salts. In a few cases, individual lanthanides could be separated because they yielded oxidation states other than three. Thus the commonest lanthanide, cerium, exhibits oxidation states of h-3 and -t-4 hence oxidation of a mixture of lanthanide salts in alkaline solution with chlorine yields the soluble chlorates(I) of all the -1-3 lanthanides (which are not oxidised) but gives a precipitate of cerium(IV) hydroxide, Ce(OH)4, since this is too weak a base to form a chlorate(I). In some cases also, preferential reduction to the metal by sodium amalgam could be used to separate out individual lanthanides. [Pg.441]

Bromine. Slip the glass cover of a jar momentarily aside, add 2-3 ml. of bromine water, replace the cover and shake the contents of the jar vigorously. Note that the bromine is absorbed only very slowly, in marked contrast to the rapid absorption by ethylene. This slow reaction with bromine water is also in marked contrast to the action of chlorine water, which unites with acetylene with explosive violence. (Therefore do not attempt this test with chlorine or chlorine water.)... [Pg.87]

When iodobenzene in chloroform solution is treated with chlorine, the iodine... [Pg.185]

Chlorine-WATER. Water saturated in the cold with chlorine gas (about 0 7%). [Pg.525]

The filtrate, which contains lead acetate, may be treated with chlorine ... [Pg.199]

In the absence of catalysts, toluene when treated with chlorine (or bromine) at the boiling point, preferably with exposure to sunlight or other bright light source, undergoes halogenation in the side chain. The entrance of the first chlorine atom, for example, proceeds at a much faster rate than the entrance of the second chlorine atom so that in practice the major portion of the toluene is converted into benzyl chloride before appreciable chlorination of benzyl chloride occurs ... [Pg.534]

It is convenient to describe here certain polyvalent iodine compounds, formed by such substances as iodobenzene and p-iodotoluene. lodobenzeue in chloroform solution reacts readily with chlorine to form iodobenzene dlchlorlde (phenyl iododichloride) (I) ... [Pg.534]

Natural titanium is reported to become very radioactive after bombardment with deuterons. The emitted radiations are mostly positrons and hard gamma rays. The metal is dimorphic. The hexagonal alpha form changes to the cubic beta form very slowly at about 88O0C. The metal combines with oxygen at red heat, and with chlorine at 550oC. [Pg.76]

Element 104, the first transactinide element, is expected to have chemical properties similar to those of hafnium. It would, for example, form a relatively volatile compound with chlorine (a tetrachloride). [Pg.158]

Note 1. Butyl- or ethyllithium in diethyl ether, prepared from the alkyl bromide, contains LiBr, which may react with chlorine to form bromine, so that RCeC-Br will also be formed. [Pg.67]

The most abundant natural steroid is cholesterol. It can be obtained in large quantides from wool fat (15%) or from brain or spinal chord tissues of fat stock (2-4%) by extraction with chlorinated hydrocarbons. Its saturated side-chain can be removed by chromium trioxide oxidation, but the yield of such reactions could never be raised above 8% (see page 118f.). [Pg.285]

Chlorination of the azobenzene complex 463 with chlorine produces mono-chloroazobenzene with regeneration of PdCN. Then complex formation takes place again with the chlorinated azobenzene. By this sequence, finally tetra-chloroazobenzene (503) is obtained using a catalytic amount of PdCT. The reaction, carried out by passing chlorine gas into an aqueous dioxane solution of azobenzene and PdCf for 16 h, gives a mixture of polychlorinated azoben-zenes[455]. [Pg.93]

Termination steps are m general less likely to occur than the propagation steps Each of the termination steps requires two free radicals to encounter each other m a medium that contains far greater quantities of other materials (methane and chlorine mol ecules) with which they can react Although some chloromethane undoubtedly arises via direct combination of methyl radicals with chlorine atoms most of it is formed by the propagation sequence shown m Figure 4 21... [Pg.173]

In the laboratory it is more convenient to use light either visible or ultraviolet as the source of energy to initiate the reaction Reactions that occur when light energy IS absorbed by a molecule are called photochemical reactions Photochemical techniques permit the reaction of alkanes with chlorine to be performed at room temperature... [Pg.175]

The resulting free radicals react with chlorine to give the corresponding alkyl chlorides Butyl radical gives only 1 chlorobutane sec butyl radical gives only 2 chlorobutane... [Pg.175]

Alkynes react with chlorine and bromine to yield tetrahaloalkanes Two molecules of the halogen add to the triple bond... [Pg.381]

Although alkenes typically react with chlorine and bromine by addition at room tern perature and below (Section 6 14) substitution becomes competitive at higher tempera tures especially when the concentration of the halogen is low When substitution does occur It IS highly selective for the allylic position This forms the basis of an industrial preparation of allyl chloride... [Pg.396]

Mixtures of 1 2 and 1 4 addition products are obtained when 1 3 butadiene reacts with chlorine or bromine... [Pg.407]


See other pages where With chlorine is mentioned: [Pg.58]    [Pg.94]    [Pg.94]    [Pg.94]    [Pg.95]    [Pg.116]    [Pg.135]    [Pg.189]    [Pg.219]    [Pg.258]    [Pg.600]    [Pg.82]    [Pg.83]    [Pg.387]    [Pg.417]    [Pg.533]    [Pg.1058]    [Pg.10]    [Pg.499]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



© 2024 chempedia.info