Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia conversion

Conversely, ammonia is a weak acid that generates the strong base, NH2 . [Pg.75]

A process has been developed by Haldor Tops0e that treats coal gas in the temperature range from 330° to 500°C (662°F to 932°F) and delivers a product gas that is environmentally acceptable as gas turbine fuel with regard to the common impurities sulfur, nitrogen compounds, and halogens (Nielsen and Rudbeck. 1993). The overall gas purification scheme includes halogen removal, water-gas shift conversion, ammonia adsorption, and sulfur removal. [Pg.1328]

Thus an excess of ammonia in the reactor has a marginal eflFect on the primary reaction but significantly decreases the rate of the secondary reactions. Using excess ammonia also can be thought of as operating the reactor with a low conversion with respect to ammonia. [Pg.51]

These compounds can be malodorous as in the case of quinoline, or they can have a plecisant odor as does indole. They decompose on heating to give organic bases or ammonia that reduce the acidity of refining catalysts in conversion units such as reformers or crackers, and initiate gum formation in distillates (kerosene, gas oil). [Pg.326]

Place 5 ml. of benzaldehyde in a wide-necked stout-walled bottle of about 100 ml. capacity (a conical flask is too fragile for this purpose) and add 50 ml. of concentrated dy 0 880) ammonia solution. Cork the bottle securely, shake vigorously, and then allow to stand for 24 hours, by which time the layer of benzaldehyde at the bottom of the bottle will have been converted into a hard mass of hydrobenzamide. (If after 24 hours the crude hydrobenzamide is still syrupy, shake the mixture vigorously and allow to stand for another hour, when the conversion will be complete.) Break up the solid pellet with a strong spatula, filter at the pump, wash with water and drain thoroughly. Recrystallise from ethanol methylated spirit should not be used, as it contains sufficient water to cause partial hydrolysis back to benzaldehyde and ammonia. Hydrobenzamide is obtained as colourless crystals, m.p. 101° (and not 110° as frequently quoted) yield, 4 g. [Pg.230]

Note. For a very weak acid, the ammonium salt of which may dissociate rapidly on heating, conversion into the sodium salt rs recommended. Place o-1 g. of the acid in a boiling-tube and add NaOH solution until the mixture is just alkaline to litmus-paper. Add dil. HNO3 until just acid and then a slight excess of ammonia until again just alkaline. Add a piece of unglazed porcelain, and boil until the odour of ammonia is removed, and then cool. [Pg.332]

The method is based on the conversion of urea to amnionium carbonate and the estimation of the latter by titration with standard acid. For this purpose, two equal quantities of urea (or urine) are measured out into two flasks A and B. A is treated with 10 ml. of a strong urease preparation and some phenol-phthalein, warm water is added and the mixture is adjusted by the addition of V/io HCl from a burette A until the red colour is just discharged. This brings the mixture to about pH 8 (the optimum for urease) and also prevents loss of ammonia. [Pg.520]

Place 125 ml. of concentrated ammonia solution (sp. gr. 0-88) in a 600 ml. beaker and surround the latter with crushed ice. Stir the ammonia solution mechanically, and introduce the n-caproyl chloride slowly by means of a suitably supported separatory funnel with bent stem. The rate of addition must be adjusted so that no white fumes are lost. The amide separates immediately. Allow to stand in the ice water for 15 minutes after all the acid chloride has been introduced. Filter oflF the amide at the pump use the flltrate to assist the transfer of any amide remaining in the beaker to the Alter (2). Spread the amide on sheets of Alter or drying paper to dry in the air. The crude n-capro-amide (30 g.) has m.p. 98-99° and is sufficiently pure for conversion into the nitrile (Section 111,112) (3). Recrystallise a small quantity of the amide by dissolving it in the minimum volume of hot water and allowing the solution to cool dry on filter paper in the air. Pure n-caproamide has m.p. 100°. [Pg.404]

The conversion of a diazo ketone to an acid amide may be accomplished by treating a warm solution in dioxan with 10-28 per cent, aqueous ammonia solution containing a small amount of silver nitrate solution, after which the mixture is heated at 60°-70° for some time. Precautions should be taken (by use of a. safety glass shield) when heating mixtures containing ammoniacal silver nitrate. [Pg.903]

Amination of propylene The conversion of ammonia and propylene to isopropylamine and diisopropylamine was shown to take place over a sodium catalyst at ca. 25(TC and 850-1000 atm pressure (ref. 7). In contrast, we have found that these reagents... [Pg.183]

Fig. 1. Addition of the reagent with temperature control and introduction of nitrogen. Fig. 1. Reaction vessel suitable for conversions in liquid ammonia. Fig. 1. Addition of the reagent with temperature control and introduction of nitrogen. Fig. 1. Reaction vessel suitable for conversions in liquid ammonia.
The conversion of acetylenes into acetyl ides, M-C=C-R (M = Li, Na, K, MgBr), by means of alkyllithium or Grignard reagents in organic solvents or by alkali metal amides in liquid ammonia is well documented (for practical examples see ref. 1, for review articles consult inter alia refs. 2-5). [Pg.7]

Anhydrous liquid ammonia (note 2) (900 ml) was drawn from a cylinder and introduced into the flask. Iron(III) nitrate (lOO mg) was added and, as soon as a uniformly brown solution had formed (after stirring for a few seconds), about 0.7 g of lithium (from the starting amount of 7 g) was cut into two or three pieces and immediately introduced into the flask. After 10-15 min the blue colour had disappeared completely and a white suspension of lithium amide had formed. The remainder of the 7 g (1 mol) of lithium was then cut up and introduced. In most cases the conversion was finished v/ithin about 30 min (note 3). [Pg.20]

The amount of metal required gives an indication of the water content. note 3. If the conversion takes longer, add some liquid ammonia to keep the volume of the suspension between 500 and 800 ml. iinte 4. The conversion of lithium and potassium into the alkali amides has never given problems. [Pg.20]

Note 2. Propargyl bromide itself also reacts with ammonia and therefore the interval between the addition of this compound and its conversion with the enethiolate should be kept as short as possible. Inverse addition was applied if propargyl bromide is added to the enthiolate solution, the primary product partly isomerizes into H2C=C(5C2Hs)SCH=C=CH2 under the catalytic influence of the enethiolate. [Pg.202]

This experiment describes a semester-long project in which the concentration of several ions in a fresh water aquarium are monitored. Ions that are monitored using potentiometric electrodes include H+ (pH electrode), Gh (chloride electrode), HG03 (GO2 electrode), NH4+ (NH3 electrode), and N03 (NH3 electrode). Nitrate concentrations were determined following its conversion to ammonia. [Pg.534]

Conversion at Equilibrium. The maximum urea conversion at equilibrium attainable at 185°C is ca 53% at infinite heating time. The conversion at equiUbtium can be increased either by raising the reactor temperature or by dehydrating ammonium carbamate in the presence of excess ammonia. Excess ammonia shifts the reaction to the right side of the overall equation ... [Pg.300]

Continuous processes have been developed for the alcohols, operating under pressure with Hquid ammonia as solvent. Potassium hydroxide (206) or anion exchange resins (207) are suitable catalysts. However, the relatively small manufacturing volumes militate against continuous production. For a while a continuous catalytic plant operated in Raveima, Italy, designed to produce about 40,000 t/yr of methylbutynol for conversion to isoprene (208,209). [Pg.114]

The ammonium chloride process, developed by Asahi Glass, is a variation of the basic Solvay process (9—11). It requires the use of soHd sodium chloride but obtains higher sodium conversions (+90%) than does the Solvay process. This is especially important ia Japan, where salt is imported as a soHd. The major difference from the Solvay process is that here the ammonium chloride produced is crystallized by cooling and through the addition of soHd sodium chloride. The resulting mother Hquor is then recycled to dissolve additional sodium chloride. The ammonium chloride is removed for use as rice paddy fertilizer. Ammonia makeup is generally suppHed by an associated synthesis plant. [Pg.524]

Pollution Prevention. Procedures haven been developed for recovery of composite ammonium perchlorate propellant from rocket motors, and the treatment of scrap and recovered propellant to reclaim ingredients. These include the use of high pressure water jets or compounds such as ammonia, which form fluids under pressure at elevated temperature, to remove the propellant from the motor, extraction of the ammonium perchlorate with solvents such as water or ammonia as a critical fluid, recrystalli2ation of the perchlorate and reuse in composite propellant or in slurry explosives or conversion to perchloric acid (166,167). [Pg.50]

In 1991, the relatively old and small synthetic fuel production faciHties at Sasol One began a transformation to a higher value chemical production facihty (38). This move came as a result of declining economics for synthetic fuel production from synthesis gas at this location. The new faciHties installed in this conversion will expand production of high value Arge waxes and paraffins to 123,000 t/yr in 1993. Also, a new faciHty for production of 240,00 t/yr of ammonia will be added. The complex will continue to produce ethylene and process feedstock from other Sasol plants to produce alcohols and higher phenols. [Pg.167]

Because an excess of ammonia is fed to the reactor, and because the reactions ate reversible, ammonia and carbon dioxide exit the reactor along with the carbamate and urea. Several process variations have been developed to deal with the efficiency of the conversion and with serious corrosion problems. The three main types of ammonia handling ate once through, partial recycle, and total recycle. Urea plants having capacity up to 1800 t/d ate available. Most advances have dealt with reduction of energy requirements in the total recycle process. The economics of urea production ate most strongly influenced by the cost of the taw material ammonia. When the ammonia cost is representative of production cost in a new plant it can amount to more than 50% of urea cost. [Pg.220]

CoF is used for the replacement of hydrogen with fluorine in halocarbons (5) for fluorination of xylylalkanes, used in vapor-phase soldering fluxes (6) formation of dibutyl decalins (7) fluorination of alkynes (8) synthesis of unsaturated or partially fluorinated compounds (9—11) and conversion of aromatic compounds to perfluorocycHc compounds (see Fluorine compounds, organic). CoF rarely causes polymerization of hydrocarbons. CoF is also used for the conversion of metal oxides to higher valency metal fluorides, eg, in the assay of uranium ore (12). It is also used in the manufacture of nitrogen fluoride, NF, from ammonia (13). [Pg.178]

Other applications of zirconium tetrafluoride are in molten salt reactor experiments as a catalyst for the fluorination of chloroacetone to chlorofluoroacetone (17,18) as a catalyst for olefin polymerization (19) as a catalyst for the conversion of a mixture of formaldehyde, acetaldehyde, and ammonia (in the ratio of 1 1 3 3) to pyridine (20) as an inhibitor for the combustion of NH CIO (21) in rechargeable electrochemical cells (22) and in dental applications (23) (see Dentalmaterials). [Pg.262]

However, BASF developed a two-step process (25). After methyl formate [107-31-3] became available in satisfactory yields at high pressure and low temperatures, its conversion to formamide by reaction with ammonia gave a product of improved quaUty and yield in comparison with the earlier direct synthesis. [Pg.508]


See other pages where Ammonia conversion is mentioned: [Pg.234]    [Pg.467]    [Pg.234]    [Pg.324]    [Pg.234]    [Pg.467]    [Pg.234]    [Pg.324]    [Pg.258]    [Pg.278]    [Pg.2698]    [Pg.300]    [Pg.197]    [Pg.566]    [Pg.175]    [Pg.1]    [Pg.18]    [Pg.21]    [Pg.18]    [Pg.81]    [Pg.298]    [Pg.76]    [Pg.182]    [Pg.167]    [Pg.169]    [Pg.169]    [Pg.216]    [Pg.5]    [Pg.37]    [Pg.62]   
See also in sourсe #XX -- [ Pg.220 , Pg.221 , Pg.224 , Pg.238 , Pg.240 , Pg.269 ]




SEARCH



© 2024 chempedia.info