Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flasks conical

This type of filtration is almost invariably performed with the aid of a Buchner flask and funnel, by means of which a rapid and almost complete separation can be obtained. The Buchner flask A (Fig. 4) consists of a simple thick-walled conical flask with a short side-arm for connection to a water-pump. Into the neck of the flask is fitted the Buchner funnel B which consists usually of a cylindrical porcelain funnel, the bed of which is pierced by a... [Pg.10]

The crude material is therefore placed either in a round-bottomed bolt-head flask (Fig. 8) or in a conical flask, the solvent added (again in slight deficiency) and a reflux water-condenser fitted to the flask as shown. The mixture is boiled either on a water-bath or over a gauze, and then more solvent added cautiously down the condenser until a clear solution (apart from insoluble impurities) is again obtained. It is then filtered hot as described above. [Pg.17]

The hot filtered solution is then without delay poured into a lipped beaker or a conical flask not into an evaporating-basin, since it is crystallisation and not evaporation which is now required), the beaker covered with a watch-glass, and then cooled in ice-water. As cooling proceeds, the solution should be stirred from time to time to facilitate crystallisation, and when crystallisation appears complete, the cooling should be continued for at least another 15 minutes. [Pg.17]

Steam generator. For small scale work the steam generator D, Fig. 15, p. 33) is too cumbersome for the production of a small amount of steam. It is preferable to use a 250 ml. conical flask fitted with cork containing a vertical safety tube and an outlet-tube (Fig. 44). Care should be taken that the length of rubber tubing connecting the steam oudet tube to the flask containing the materi to be distilled should be as short as possible and should not contain kinks. [Pg.66]

Place 0 5 ml. of acetone, 20 ml. of 10% aqueous potassium iodide solution and 8 ml. of 10% aqueous sodium hydroxide solution in a 50 ml. conical flask, and then add 20 ml. of a freshly prepared molar solution of sodium hypochlorite. Well mix the contents of the flask, when the yellow iodoform will begin to separate almost immediately allow the mixture to stand at room temperature for 10 minutes, and then filter at the pump, wash with cold w ater, and drain thoroughly. Yield of Crude material, 1 4 g. Recrystallise the crude iodoform from methylated spirit. For this purpose, place the crude material in a 50 ml. round-bottomed flask fitted with a reflux water-condenser, add a small quantity of methylated spirit, and heat to boiling on a water-bath then add more methylated spirit cautiously down the condenser until all the iodoform has dissolved. Filter the hot solution through a fluted filter-paper directly into a small beaker or conical flask, and then cool in ice-water. The iodoform rapidly crystallises. Filter at the pump, drain thoroughly and dry. [Pg.92]

Prepare a solution of 12 5 g. of hydroxylamine hydrochloride in 20 ml. of water contained in a too ml. conical flask. Dissolve 7 g. of powdered sodium hydroxide in 20 ml. of water, cool the solution in ice-water, and then add it to that of the hydroxylamine hydrochloride. Place a thermometer in the mixed solution, and chill the flask in ice-water until the temperature of the solution is between 5 and 10 . Now add 12 ml. (9 5 gO of dry acetone (preferably from a burette to ensure... [Pg.94]

The oxime is freely soluble in water and in most organic liquids. Recrystallise the crude dry product from a minimum of 60-80 petrol or (less suitably) cyclohexane for this purpose first determine approximately, by means of a small-scale test-tube experiment, the minimum proportion of the hot solvent required to dissolve the oxime from about 0-5 g. of the crude material. Then place the bulk of the crude product in a small (100 ml.) round-bottomed or conical flask fitted with a reflux water-condenser, add the required amount of the solvent and boil the mixture on a water-bath. Then turn out the gas, and quickly filter the hot mixture through a fluted filter-paper into a conical flask the sodium chloride remains on the filter, whilst the filtrate on cooling in ice-water deposits the acetoxime as colourless crystals. These, when filtered anddried (either by pressing between drying-paper or by placing in an atmospheric desiccator) have m.p. 60 . Acetoxime sublimes rather readily when exposed to the air, and rapidly when warmed or when placed in a vacuum. Hence the necessity for an atmospheric desiccator for drying purposes. [Pg.94]

Arrange the adaptor D so that the end dips below the surface of about 50 ml. of water contained in a small conical flask, or beaker, which is in turn surrounded by a mixture of ice and water. Place 37 (30 g-) of ethanol and 25 ml. of water in the flask A, and... [Pg.101]

Add 20 ml. of a mixture of equal volumes of acetic anhydride and glacial acetic acid to 10 ml. (10 3 g.) of aniline contained in a 150 ml. conical flask. Fit a reflux water-condenser to the flask, and boil the mixture gently for 10 minutes. Then pour the hot liquid into 200 ml. of cold water, stirring the latter well... [Pg.108]

Dissolve 10 g. of salicylic acid (o-hydroxybenzoic acid) in 7 ml. of dry pyridine contained in a too ml. conical flask. Then without delay (since this solution if allowed to stand tends to become a semi-solid mass) run in 7 5 ml. (8 3 g.) of acetyl chloride, adding about i ml. of the chloride at a time, and shaking the mixture continuously during the addition. The heat of the reaction causes the temperature of the mixture to rise rapidly ... [Pg.110]

Hydrolysis of Aspirin. Gently boil a mixture of i g. of aspirin and 15 ml. of 10% sodium hydroxide solution in a 50 ml. conical flask under reflux for 20 minutes. Then cool the solution thoroughly and add dilute sulphuric acid until the precipitation of the... [Pg.111]

Acetamide is thus obtained as a colourless crystalline solid, which has a characteristic odour of mice, stated to be due to the presence of small quantities of methylacetamide, CH3CONHCH3. The acetamide can be purified and rendered odourless by re-crystallisation from acetone, and then has m.p. 82°, b.p. 223°. If this recrystallisation is contemplated, the distilled material should be collected directly into a small weighed beaker or conical flask, so that the solidified acetamide can be readily broken up and removed. [Pg.118]

Oxamide differs from most aliphatic acid amides in being almost insoluble in water, and therefore can be readily prepared from the diethyl ester by Method 2(a). Place a mixture of 5 ml. of concentrated [d o-88o) ammonia solution and 5 ml. of water in a 25 ml. conical flask, for which a welTfitting cork is available. (The large excess of... [Pg.118]

Succinamide. NHoCOCH2 CH2CONH2. (Method 2(a)). Add 5 ml. (5 8 g.) of dimethyl succinate to a mixture of 50 ml. of water and 25 ml. of concentrated [dy o-88o) aqueous ammonia solution in a 150 ml. conical flask. Cork the flask and shake the contents the dimethyl succinate rapidly dissolves to give a clear solution. Allow the solution to stand after about i hour the succinamide starts to crystallise, and then continues to separate for some time. Next day, filter off the succinamide at the pump, wash with cold water, and drain. Recrystallise from water, from which the succinamide separates as colourless crystals the latter soften at 240° and melt at 254 -255° with... [Pg.119]

Place I g. of benzamide and 15 ml. of 10% aqueous sodium hydroxide solution in a 100 ml. conical flask fitted with a reflux water-condenser, and boil the mixture gently for 30 minutes, during which period ammonia is freely evolved. Now cool the solution in ice-water, and add concentrated hydrochloric acid until the mixture is strongly acid. Benzoic acid immediately separates. Allow the mixture to stand in the ice-water for a few minutes, and then filter off the benzoic add at the pump, wash with cold water, and drain. Recrystallise from hot water. The benzoic acid is obtained as colourless crystals, m.p. 121°, almost insoluble in cold water yield, o 8 g. (almost theoretical). Confirm the identity of the benzoic acid by the tests given on p. 347. [Pg.120]

Dissolve 5 g. of aniline hydrochloride in 120 ml. of hot water contained in a 200 ml. conical flask and then add 4 g. of potassium cyanate. Heat the solution on a water-bath for 30 minutes, adding about 1-2 g. of animal charcoal towards the end of the heating if a slight turbidity has developed. Now bring the solution quickly to the boil over a gauze, and filter it at the pump, using a Buchner funnel and flask which have been preheated by the filtration of some boiling distilled water. The clear... [Pg.124]

Dissolve 12 g. of aniline hydrochloride and 6 g. of urea in 50 ml. of warm water, and then filter the solution through a fluted filter to remove any suspended impurities which may have been introduced with the aniline hydrochloride. Transfer the clear filtrate to a 200 ml. conical flask, fit the latter with a reflux water-condenser, and boil the solution gently over a gauze for about hours. Crystals of diphenylurea usually start to separate after about 30-40 minutes boiling. Occasionally however, the solution becomes supersaturated with the diphenylurea and therefore remains clear in this case, if the solution is vigorously shaken after about 40 minutes heating, a sudden separation of the crystalline diphenyl compound will usually occur. The further deposition of the crystals during the re-... [Pg.125]

Alternatively a preheated conical funnel and fluted filter may be used, and the filtrate collected directly in a conical flask. [Pg.126]

Dissolve 36 g. of sodium hydroxide in 160 ml. of water contained in a 500 ml. conical flask, and chill the stirred solution to 0-5° in ice-water. Now add io-8 ml. (32-4 g.) of bromine slowly to the stirred solution exercise care in manipulating liquid bromine ) during this addition the temperature rises slightly, and it should again be reduced to 0-5°. Add a solution of 12 g. of acetamide in 20 ml. of water, in small portions, to the stirred hypobromite solution so that the temperature of the mixture does not exceed 20° the sodium acet-bromoamide is thus obtained in the alkaline solution. Now remove the flask from the ice-water, and set it aside at room temperature for 30 minutes. [Pg.128]

Add 15 g, of chloroacetic acid to 300 ml. of aqueous ammonia solution d, o-88o) contained in a 750 ml. conical flask. (The manipulation of the concentrated ammonia should preferably be carried out in a fume-cupboard, and great care taken to avoid ammonia fumes.) Cork the flask loosely and set aside overnight at room temperature. Now concentrate the solution to about 30 ml. by distillation under reduced pressure. For this purpose, place the solution in a suitable distilling-flask with some fragments of unglazed porcelain, fit a capillary tube to the neck of the flask, and connect the flask through a water-condenser and receiver to a water-pump then heat the flask carefully on a water-bath. Make the concentrated solution up to 40 ml. by the addition of water, filter, and then add 250 ml. of methanol. Cool the solution in ice-water, stir well, and set aside for ca. I hour, when the precipitation of the glycine will be complete. [Pg.130]

Boil the mixture gently on a sand-bath for 4 hours and then decant into a conical flask and cool. Seed the cold solution if necessary with a trace of a-methylglucoside. The glucoside separates as colourless crystals. When crystallisation ceases, filter the glucoside at the pump, drain, wash quickly with a small quantity of methanol, and then recrystallise from a minimum of methanol. For this purpose methanol of good quality, but not necessarily anhydrous, should be used. The a-methylglucoside is obtained as colourless crystals, m,p. 165°. Yield, 6-7 g. [Pg.144]

If difficulty is experienced in inducing the first crude crop of the a-glucoside to ciystallise, place a few drops of the solution on a watch glass and expose freely to the air, with occasional scratching meanwhile keep the main volume of the solution securely corked in the conical flask. After an interval of varying length (possibly several days), partial crystallisation occurs in the material on the watch-glass. Then seed the solution with this material crystallisation of the first main crop will rapidly follow. [Pg.145]

To purify the crude dinitrobenzene, transfer it to a 200 ml. conical flask fitted with a reflux water-condenser, add about 100 ml. of rectified spirit, and heat on a water-bath until the... [Pg.161]

Dissolve I g. of finely powdered acetanilide in 5 ml. of cold glacial acetic acid contained in a 25 ml. conical flask. Then in another small flask prepare a solution of 0 42 ml. (1 34 g.) of bromine (care ) in 6 ml. of glacial acetic acid, and add this solution slowly to the acetanilide solution, shaking the latter throughout the addition to ensure thorough mixing. Allow the final mixture to stand at room temperature for 15 minutes. Then... [Pg.166]

Prepare a mixture of 25 ml. of concentrated nitric acid and 80 ml. of water in a 750 ml. flat-bottomed flask for which a steam-distillation fitting is available for subsequent use. Warm a mixture of 20 g. of phenol and 15 ml. of water gently in a small conical flask until the phenol is molten on shaking the... [Pg.170]


See other pages where Flasks conical is mentioned: [Pg.17]    [Pg.22]    [Pg.44]    [Pg.49]    [Pg.71]    [Pg.75]    [Pg.81]    [Pg.91]    [Pg.97]    [Pg.102]    [Pg.102]    [Pg.105]    [Pg.106]    [Pg.108]    [Pg.110]    [Pg.122]    [Pg.129]    [Pg.133]    [Pg.141]    [Pg.143]    [Pg.163]    [Pg.165]    [Pg.180]    [Pg.181]    [Pg.182]   
See also in sourсe #XX -- [ Pg.146 ]

See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Conicity

Flasks

© 2024 chempedia.info